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I. Einleitung 

Die Anfänge der extrakorporalen Zirkulation reichen bis in die dreißiger Jahre des 

vorigen Jahrhunderts zurück. Der amerikanische Herzchirurg John Heysham Gibbon 

(1903-1973) beschrieb 1937 die erste experimentelle extrakorporale Zirkulation (EKZ). 

Es dauerte allerdings noch weitere 16 Jahre, bis ihm am 6.Mai 1953 der Durchbruch 

gelang. Er operierte eine 18-jährige Frau mit Vorhofseptumdefekt, wobei die Patientin 

45 Minuten lang an eine Herz-Lungen-Maschine angeschlossen war 62. In den folgenden 

Jahren und Jahrzehnten wurden die Bypass-Systeme durch Verbesserung bzw. 

Neuentwicklung der einzelnen Komponenten immer sicherer und leistungsfähiger, so 

dass bis heute allein in Deutschland jährlich fast 100.000 Herzoperationen unter Einsatz 

einer Herz-Lungen-Maschine (HLM) durchgeführt werden. 

 

1. Funktion einer HLM 

Trotz zahlreicher neuer Operationsmethoden sind auch heute noch viele 

kardiochirurgische Eingriffe ohne Einsatz einer Herz-Lungen-Maschine (HLM) 

undenkbar. Bei Operationen am offenen Herzen und zur Schaffung optimaler 

Operationsbedingungen durch die Induktion eines vorübergehenden Herzstillstandes 

wird durch die HLM temporär die Aufgabe von Herz und Lungen übernommen.  

Damit kommt der HLM die Sicherstellung folgender Aufgaben zu: 

a) Respiration: Oxygenierung des arteriellen Blutes und CO2-Elimination aus dem 

venösen Blut 

b) Zirkulation: Aufrechterhaltung des gewünschten Blutflusses und 

Perfusionsdrucks unter Minimierung von Hämolyse und Traumatisierung 

anderer korpuskulärer Blutbestandteile 

c) Temperatur-Regulation: ggf. intraoperative Hypothermie zur Organprotektion 
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2. Aufbau einer HLM 

 

 

  

Abbildung 1: Schematische Darstellung eines extrakorporalen Kreislaufs 173 

 

Alle konventionellen HLM weisen prinzipiell die gleichen essentiellen Bestandteile auf. 

Es handelt sich um geschlossene Kreissysteme, die aus einem Pumpensystem, einem 

Oxygenator, einem Vent-System (sog. Entlüftungs- bzw. Entlastungssauger), einem 

Kardiotomie-Sauger und einem venösen Reservoir bestehen. 

 

Das venöse, sauerstoffentsättigte Blut verlässt den Patienten über eine Kanüle im 

rechten Vorhof (bzw. über zwei Kanülen in den beiden Venae cavae) und wird im 

Reservoir gesammelt. Nach der Aufsättigung des Blutes mit Sauerstoff im Oxygenator 

wird dieses mittels einer Pumpe nach Passieren eines Wärmetauschers, eines Filters und 

einer Blasenfalle (zur Verhinderung von Luftembolien) über eine Kanüle zumeist in der 

Aorta ascendens in das arterielle System des Patienten reinfundiert. 
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a.) Pumpen 

Man unterscheidet bei den konventionellen Systemen der EKZ unterschiedliche Arten 

von Pumpen. Die gebräuchlichsten sind Roller-Pumpen und Zentrifugal-Pumpen, wobei 

erstgenannte in Deutschland am häufigsten verwendet werden. 

 

 

Abbildung 2: Patentschrift der bekanntesten Modifikation einer Rollerpumpe durch 

Michael E. DeBakey (1935)40 
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Bei der Rollerpumpe wird der Blutfluss durch die Kompression blutgefüllter Schläuche 

erreicht. Dabei sind zwei Rollen einander gegenüber angebracht, so dass ein 

kontinuierlicher Kontakt zum Schlauchsystem und damit ein kontinuierlicher Blutfluss 

entstehen. Der Blutfluss verhält sich dabei linear zu den Pumpenumdrehungen pro 

Minute und ist abhängig vom Innendurchmesser des Schlauchsystems. Auch das 

Schlauchmaterial, dessen Elastizität und die Material-Temperatur beeinflussen die 

Flussrate. Da die Pumpe unvermeidlich zu einer temporären Okklusion des 

Schlauchlumens führt, ergeben sich daraus auch die Probleme und Nachteile dieses 

Systems. Die Okklusion des Schlauchs kann unter Umständen zu einer Hämolyse 

führen. Wird die Kompression zu niedrig eingestellt, wird zwar die Hämolyse 

verringert, dafür ist dann aber der Vorwärtsstrom u.U. nicht ausreichend. Bei zu hoher 

Kompression resultieren ebenfalls ein nicht ausreichender Blutfluss und eine hohe 

Hämolyserate. Bei totaler Okklusion werden derart hohe Drücke erzeugt, dass 

Schläuche bzw. Schlauchverbindungen platzen können. Darüber hinaus kann die 

Maschine bei Verlegung des Einflussschlauchs derart hohe negative Drücke erzeugen, 

dass Stickstoff aus dem Blut ausgast, was zu Luftembolien führen kann. 

Bei Zentrifugalpumpen hingegen wird der Blutfluss durch Rotation z.B. eines 

Impellers (Impeller= ummantelter Rotor, siehe Abbildung 2) mit Drehzahlen bis zu 

10.000 U/min gewährleistet. Der Blutfluss hängt aber nicht ausschließlich von der 

Rotationsgeschwindigkeit des Impellers ab, sondern vielmehr vom Wechselspiel aus 

Rotation (Drehzahl 100-10.000 U/min; Fluss 0-8 l/min), Länge, Durchmesser und 

Widerstand des Schlauchsystems sowie dem Vasotonus des Patienten. 
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Abbildung 3: Delta Stream Mikrodiagonalpumpe 42 

 

b.) Oxygenator 

Mit Hilfe des Oxygenators ist es möglich, den pulmonal-kapillären Gasaustausch zu 

ersetzen und damit zumindest temporär die O2-Aufnahme und CO2-Elimination zu 

gewährleisten. Für eine optimale Funktion müssen die Bauweise und die Funktion des 

Oxygenators so geartet sein, dass a) der Gastransport optimiert (v.a. durch eine 

Verringerung der Diffusionsdistanz), b) zelluläre Blutbestandteile wenig traumatisiert 

und c) das Priming-Volumen so gering wie möglich gehalten werden, um 

Dilutionseffekte zu minimieren. Die heute gebräuchlichsten Oxygenatoren sind sog. 

Membranoxygenatoren, die eine Gesamtoberfläche von bis zu 4,5 m² aufweisen. Die 

gebräuchlichsten Typen besitzen sog. Hohlfaser-Membranen aus Polypropylen oder 

Silikon. 
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c.) Venöses Reservoir 

Bei den venösen Reservoirs unterscheidet man starre Hart-Schalen-Reservoirs von 

„Soft-bag“-Reservoirs. Vor allem erstere dienen zusätzlich zum Auffangen und Filtern 

von Sauger- und Vent-Blut. Außerdem ist der Füllungsstand des Reservoirs deutlich 

besser zu bestimmen als bei einem Soft-bag-System. Demgegenüber fehlt bei letzteren 

der Atmosphären-Kontakt, so dass weitgehend ausgeschlossen werden kann, dass 

größere Mengen Luft in den extrakorporalen Kreislauf gelangen können. 

 

d.) Venöse Kanülierung 

Es gibt unterschiedliche Möglichkeiten der venösen Kanülierung. So genannte „Two-

Stage“-Kanülen drainieren gleichzeitig die untere Hohlvene und das rechte Atrium. 

Alternativ werden die obere und die untere Hohlvene separat kanüliert. Desweiteren 

unterscheidet man einen „totalen“ von einem „partiellen“ Bypass. Bei einem totalen 

Bypass wird das gesamte venöse Blut aus den Venae cavae und dem Sinus coronarius in 

den Oxygenator geleitet. Beim partiellen Bypass hingegen besteht noch ein Restfluss 

durch den kleinen Kreislauf in das linke Herz mit den Nebeneffekten wie 

Herzerwärmung und vermindertem venösen Rückstrom zur HLM. 

Die treibende Kraft des venösen Rückstroms an der HLM ist das hydrostatische Gefälle 

zwischen rechtem Atrium und venösem Reservoir.  

 

e.) Arterielle Kanülierung 

Arterielles Blut wird zum Patienten über eine arterielle Kanüle zurückgeführt, die sich 

normalerweise in der Aorta ascendens befindet. In seltenen Fällen wird auch die Arteria 

femoralis kanüliert. Die arteriellen Kanülen sind so konstruiert, dass ein ausreichender 

Blutfluss gewährleistet und der Druckabfall über der Kanüle möglichst gering gehalten 

wird. 
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3. Probleme der HLM 

Obwohl in vielen Fällen unverzichtbar, ist der Einsatz einer HLM z.T. mit zahlreichen 

Nebenwirkungen assoziiert, die im Folgenden hinsichtlich Pathophysiologie und 

klinischer Bedeutung näher erläutert werden sollen:  

a.) SIRS (engl. Systemic inflammatory response syndrome) 

b.) Gerinnungsstörungen 

c.) Hämodilution 

d.) Hämolyse 

e.) Myokardiale Dysfunktion (als Folge der Kardioplegie) 

f.) Hypothermie 

 

a.) SIRS 

Bei herzchirurgischen Eingriffen unter Einsatz der EKZ kann eine systemische 

Entzündungsreaktion (SIRS= systemic inflammatory response syndrome) provoziert 

werden 35;48.  

 

Ein SIRS ist durch das Vorliegen von zwei der unten genannten vier Kriterien definiert: 

Temperatur <36°C oder >38°C 

Herzfrequenz >90/min 

Atemfrequenz >20/min oder arterieller Sauerstoffpartialdruck paCO2<32mmHg 

Leukozyten >12.000/mm³ oder <4.000/mm³ 18 

 

Beim SIRS handelt es sich um eine unspezifische humorale und zelluläre 

Immunantwort auf verschiedenartige Stimuli, wie z.B. eine Infektion, schwere Traumen 

oder große Operationen. Das SIRS kann einen unkomplizierten Verlauf nehmen, aber 

auch zu Funktionsstörungen einzelner Organe führen, wie z.B. zu einer akuten 

ventrikulären Dysfunktion, einem akutes Nierenversagen (ANV), einem akutes 

Lungenversagen (ALI = Acute Lung Injury oder ARDS= Acute Respiratory Distress 

Syndrome) oder zu neurologischen Ausfallserscheinungen (Enzephalopathie, 

Polyneuropathie). Im schlimmsten Fall kann ein SIRS in ein Multiorganversagen 

münden (MODS= multiple organ dysfunction syndrome; deutsch: MOV = 

Multiorganversagen). 
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In einer Studie von Kollef et al. wurde die Inzidenz eines Multiorganversagens nach 

EKZ mit 11% angegeben, wobei die Letalität bei 41% lag 104. Diese Zahlen 

verdeutlichen die enorme Bedeutung des Problems. Es ist bisher immer noch nicht 

eindeutig geklärt, welche Faktoren die Inzidenz, die Schwere und letztendlich auch das 

klinische Outcome dieser Immun-Reaktion beeinflussen. Zum einen scheint das sehr 

komplexe Wechselspiel zwischen pro- und anti-inflammatorischen Mediatoren die 

Klinik und den Verlauf des SIRS zu beeinflussen 126. Zum anderen existiert die 

Vorstellung eines sog. „multiple-hit“- Szenarios, demzufolge die sich normalerweise 

selbst limitierende inflammatorische Reaktion erst durch das Zusammenwirken mit 

anderen Ereignissen (wie Infektionen oder länger andauernder Organ-Minderperfusion) 

zu einem unkontrollierbaren Prozess und konsekutiver Organzerstörung führt 39;156.  

Die systemische Entzündungsreaktion kann intraoperativ durch unterschiedliche 

Faktoren verursacht werden. Als unspezifische Ursachen gelten die intraoperative 

Hypothermie, das chirurgische Trauma, Blutverluste, aber auch die Re-Transfusion von 

Wundblut. Zusätzlich sind speziell für die Herzchirurgie mindestens drei auslösende 

Faktoren beschrieben, die zu einem SIRS führen können 106.
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Abbildung 4: Schematische Darstellung der Ereignisse, durch die ein SIRS speziell in 

der Herzchirurgie auftreten kann.  

 

HLM

Auslösende Faktoren
Kontaktaktivierung an Fremdoberflächen

Ischämie-Reperfusion

Endotoxinämie

SIRS

totalAktivierung des Immunsystems
Komplementsystem

Zytokine
Gerinnung/Fibrinolyse

Endothel
Zelluläres Immunsystem

 

Wie in Abb. 4 angedeutet, spielen sich die Reaktionen des Immunsystems auf mehreren 

Ebenen ab. 

 

1. Komplement-System 

Eine zentrale Rolle spielt die Aktivierung des Komplement-Systems. Der Grad der 

Komplement-Aktivierung bzw. die Konzentration bestimmter Komplement-Faktoren 

scheint mit der postoperativen Morbidität zu korrelieren 23;99. Auch konnte in einigen 

experimentellen Studien gezeigt werden, dass durch die selektive Blockade von 

einzelnen Komponenten der Komplement-Kaskade Schäden am Herzen, an der Lunge, 
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am Mesenterium und an Gefäßen verringert werden können 29;169. Auch die Aktivierung 

von Thrombozyten und Leukozyten konnte so reduziert werden 71;151.  

 

2. Zytokine 

Proinflammatorische Zytokine stellen ebenfalls einen wichtigen Faktor bei Stimulation 

und Unterhaltung des inflammatorischen Prozesses dar. Während die Plasmaspiegel von 

Tumor-Nekrose-Faktor-α (TNF-α) und Interleukin-β (IL-β) bereits sehr früh (oft 

innerhalb weniger Minuten) nach kardiochirurgischen Eingriffen mit EKZ ansteigen, ist 

dies bei IL-6 und IL-8 in der Regel erst später der Fall (innerhalb von Stunden) 95;125. 

Auch wenn keine direkte Ursache-Wirkungs-Beziehung gezeigt werden konnte, ist ein 

überproportional hoher Anstieg proinflammatorischer Zytokine mit einem ungünstigen 

Outcome des Patienten nach herzchirurgischen Eingriffen assoziiert 157. Patienten, die 

postoperativ ein SIRS entwickeln, zeigen postoperativ signifikant höhere Zytokin-

Konzentrationen (IL-8 und IL-18 157, IL-6 75 ) als solche, die einen blanden, 

unproblematischen Verlauf präsentieren 157. Während der Immunantwort auf die EKZ 

wird die proinflammatorische Komponente des Zytokinnetzwerks durch eine 

antiinflammatorische Antwort gegenreguliert, die aus antiinflammatorischen Zytokinen, 

löslichen Zytokin-Rezeptoren und aus Zytokin-Rezeptor-Antagonisten besteht. Das 

zentrale antiinflammatorische Zytokin ist IL-10. IL-10 ist ein potenter Inhibitor der 

Produktion von TNF-α, IL-1 β, IL-6 und IL-8 91. Zudem verhindert es die Leukozyten-

Adhäsion an aktivierte Endothelzellen 105. Tierexperimentell konnte für IL-10 eine 

Verringerung von Ischämie- und Reperfuions-Schäden festgestellt werden 189, 

vornehmlich durch eine reduzierte Aktivierung von neutrophilen Granulozyten 126. Aber 

auch klinische Studien konnten zeigen, dass IL-10 die systemische Entzündungsantwort 

und die Ischämie/Reperfusions-Schäden verringert und somit möglicherweise einen 

kardioprotektiven Effekt hat 63;149;185.  

 

3. Endothel 

Nach aktueller Auffassung ist das Endothel keine passive Barriere, sondern nimmt aktiv 

an diversen physiologischen und pathophysiologischen Prozessen teil. Endothelzellen 

kontrollieren den Gefäßtonus und die -permeabilität, regulieren lokal die Gerinnung und 

Fibrinolyse und gewährleisten die Translokation von zellulären Bestandteilen des 

Immunsystems in Entzündungsareale. Die Entzündungsantwort nach extrakorporaler 

Zirkulation ist durch eine generalisierte Endothelaktivierung, einhergehend mit einer 

endothelialen Dysfunktion charakterisiert 8. Proinflammatorische Mediatoren wie TNF-
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a und IL-1 β binden an spezifische Rezeptoren der Endothel-Oberfläche und induzieren 

eine Signal-Transduktions-Kaskade, an deren Ende die Ausschüttung von Adhäsions-

Molekülen und Zytokinen steht. Adhäsionsmoleküle vermitteln die Interaktion 

zwischen Endothel-Zelle und zellulären Bestandteilen des Immunsystems (vorrangig 

neutrophilen Granulozyten), was letztendlich zu einer Endothel-Schädigung mit der 

Ausbildung von Kapillar-Lecks und Ödem-Bildung führt 49. Eine Schädigung des 

Gefäß-Endothels führt außerdem zu einer Störung der Mikrozirkulation, da die 

Regulation des Gefäßtonus durch die Dysbalance diverser vasokonstriktorischer und 

vasodilatierender Mediatoren wie NO, Thromboxan A2, Prostacyclin und Endothelin 

beeinträchtigt ist 79. Mehrere Studien haben gezeigt, dass proinflammatorische Zytokine 

und Endotoxin die Vasoregulation beeinflussen und zu einem sog. „endothelial 

stunning“ führen, was die Myokardperfusion beeinträchtigt und zu kardiovaskulären 

Ereignissen führen kann 11;80.  

 

4. Zelluläres Immunsystem 

Auch das zelluläre Immunsystem spielt bei der Ausbildung einer inflammatorischen 

Antwort nach EKZ eine wichtige Rolle. Dabei ist v.a. die Leukozyten-Endothel-

Interaktion und -Adhäsion von großer Bedeutung. Durch spezielle Integrine, die auf 

Leukozyten exprimiert werden (CD11a/CD18 bzw. CD11b/CD18), kommt es zu einer 

Bindung an Moleküle der extrazellulären Matrix wie Fibrinogen 49, wodurch die 

Neutrophilen zur Degranulation von zytotoxischen Proteasen, wie Elastase und 

Myeloperoxidase und Sauerstoffradikalen angeregt werden 170, was in einer Schädigung 

des Gefäßendothels und des umliegenden Gewebes resultiert. Die Bedeutung ist in 

mehreren experimentellen Studien belegt worden. Eine Unterdrückung der 

CD11/CD18-Expression 188 bzw. -Funktion 124 konnte die myokardiale Funktion nach 

Kardiochirurgie verbessern, und die Blockade der Leukozyten-Adhäsion reduzierte die 

Inzidenz von Lungenschäden nach EKZ 58. Auch Strategien zur Leukozyten-Depletion 

können Organschäden reduzieren und zu einer Verbesserung des Outcomes beitragen 
154. 
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b.) Gerinnungsstörungen 

Ein weiteres Problem, das ursächlich mit dem Einsatz der EKZ in Verbindung gebracht 

werden kann, ist die Störung der Blutgerinnung. Dies gilt sowohl für die 

koagulatorische als auch die fibrinolytische Kaskade. Auch die korpuskulären 

Bestandteile in Form der Thrombozyten sind in ihrer Funktion beeinträchtigt.  

Das Gerinnungssystem wird traditionell in einen intrinsischen und einen extrinsischen 

Aktivierungsweg unterteilt. Faktor XII als Ausgangspunkt des intrinsischen Systems 

induziert bei Adsorption an negativ geladene Oberflächen (Glas, Silikon, Kollagen, 

Dextran-Sulfat, Zellfragmente, bakterielle Endotoxine) diese Kaskade 60. Dieser als 

„Kontaktphasenaktivierung“ bezeichnete Vorgang ist eine sehr komplexe Interaktion 

zwischen Gerinnungsfaktoren (Faktor XII und XI) und dem Kallikrein-Kinin-System 10. 

Der extrinsische Weg, der zur Aktivierung den „tissue factor“ benötigt, scheint aber 

auch beteiligt zu sein, vermutlich als Folge der inflammatorischen Stimuli bzw. des 

oxidativen und des Scherstresses 19.  

Das System aus Koagulation und Antikoagulation befindet sich in einem sehr 

empfindlichen Gleichgewicht. Die Gerinnungskaskade besteht aus zirkulierenden, 

inaktiven Vorstufen, die nacheinander durch enzymatische Spaltung in aktive Serin-

Proteasen überführt werden, die dann den nächstfolgenden Faktor hydrolysieren. 

Thrombin als Endprodukt spaltet Fibrinogen ins unlösliche Fibrin. Dieser Prozess ist 

normalerweise durch antikoagulatorisch wirksame Modulatoren kontrolliert und 

begrenzt, wie Plasminogen, Thrombomodulin, Protein C und S, sowie Serin-Proteasen-

Inhibitoren wie das AT III 51.  

Im Falle einer Herzoperation mit EKZ ist eine solitäre Betrachtung der Gerinnung 

insofern nicht möglich, da es sich um eine komplexe Interaktion zwischen Koagulation, 

Inflammation und Endothelfunktionen handelt. Proinflammatorische Zytokine führen zu 

einer Gerinnungsaktivierung, indem sie über eine Endothelaktivierung die Expression 

von „tissue factor“, Leukozytenadhäsionsmolekülen und „platelet activating factor“ 

(PAF) induzieren 33;52. Über Adhäsions-Moleküle kommt es zur Interaktion von 

Endothelzellen und neutrophilen Granulozyten, was zu einer Aktivierung und 

Degranulation der Leukozyten führt. Das durch diese Schädigung freigesetzte 

subendotheliale Gewebethromboplastin, verstärkt durch IL-1β und TNF-α, aktiviert den 

extrinsischen Weg der Gerinnungskaskade 33;52. Zusätzlich wird Protein C als Inhibitor 

der Hämostase vermutlich durch TNF-α antagonisiert, so dass der bereits bestehende 

prokoagulatorische Zustand noch verstärkt wird 33. Kombiniert mit einer 

Herunterregulierung der Thrombomodulin-Expression und der fibrinolytischen 
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Kaskade, resultiert ein prokoagulatorischer Zustand, der in einer disseminierten 

intravasalen Gerinnung (DIC= disseminated intravascular coagulation) mit 

Beeinträchtigung der Mikrozirkulation und MODS münden kann 127. Die zusätzliche 

Aktivierung der Fibrinolyse während der EKZ scheint zur für diese Patienten typischen 

postoperativen Koagulopathie beizutragen 30. Durch Heparin und Protamin wird 

intraoperativ auch iatrogen in dieses System eingegriffen. Dabei beschränkt sich deren 

Wirkung nicht nur auf die Gerinnungs-Kaskade, es wird ihnen vielmehr auch eine 

immunmodulatorische Funktion zugeschrieben 26;172.  

Wie oben bereits erwähnt, erfahren auch Thrombozyten durch Einfluss der EKZ 

vielfältige Veränderungen. Durch physikalische Einflüsse wie Scherstress, Hypothermie 

und Fremdoberflächen kommt es zum einen zu einer veränderten Thrombozyten-

Funktion (Abnahme der Aggregationsfähigkeit), zum anderen zu einer Reduktion der 

Konzentration an zirkulierenden Plättchen 14. Auch die Retraktionsfähigkeit der 

Thrombozyten ist nach EKZ reduziert 37;69. Die Thrombozyten-Aktivierung, die sich in 

der veränderten Expression an Oberflächen-Molekülen ausdrückt 82;178, lässt sich 

ursächlich nicht nur auf Kontakt mit Fremdoberflächen zurückführen, sondern ist auch 

Medikamenten-bedingt (Heparin 67, Protamin 12) bzw. Folge des Anstiegs endogener 

chemischer Mediatoren (Komplementfaktoren 150 27, Zytokine 117) sowie 

Katecholaminen (Adrenalin 108).  

Dadurch kommt es perioperativ vornehmlich zu hämorrhagischen Ereignissen, die ihre 

Ursache zum einen in der Reduktion der Thrombozyten-Konzentration durch 

Hämodilution während der EKZ haben, andererseits durch eine eingeschränkte 

Thrombozyten-Funktion bedingt sind 45;191.  

Schließlich führt die Adhäsion von Thrombozyten an Endothelzellen zu einer Sekretion 

von Chemokinen und weiteren Adhäsionsmolekülen, was zu einer Rekrutierung von 

Neutrophilen Granulozyten und Monozyten führt. Dabei sind diverse 

Oberflächenmoleküle an der Adhäsion und Transmigration der Entzündungszellen 

beteiligt ( Mac-1 (CD11b/CD18) 43;161, P-Selectin 24, GPIIb/IIIa 184). 

Auch durch die oftmals eingesetzte perioperative Hypothermie kommt es zu 

Gerinnungsstörungen. Dies liegt zum einen an einer reduzierten Thrombozyten-

Funktion durch Veränderung von Oberflächen-Proteinen 129. Zum anderen konnten 

erniedrigte Thromboxan-Konzentrationen bei hypothermen Patienten festgestellt 

werden, die bei Erwärmung wieder anstiegen 176. Auch die üblichen Gerinnungstests 

(aPTT: aktivierte partielle Thromboplastian-Zeit; TPZ: Thromboplastin-Zeit) verhalten 

sich invers zur Temperatur 148. 
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c.) Hämodilution 

Während eines kardiochirurgischen Eingriffs sinkt der Hämatokrit (Hk) der Patienten 

regelhaft ab. Dies ist zum einen auf die perioperative Volumensubstitution 

zurückzuführen. Die bedeutendere Ursache ist aber die Hämodilution während der 

extrakorporalen Zirkulation, die in erster Linie Folge des sogenannten Primings der 

Herz-Lungen-Maschine ist. Mit Hilfe des Priming-Volumens werden deren 

Komponenten (s.o.) entlüftet.  

Die Induktion einer Hämodilutions-Anämie hat den Vorteil, durch die verringerte Blut-

Viskosität auch in Hypothermie einen adäquaten Blutfluss aufrecht erhalten zu können, 

ohne den Perfusionsdruck zu steigern 72;93. Auf der anderen Seite ist die Hämodilution 

aber auch mit Gefahren verbunden. Ungeklärt ist bis heute die Frage, bis zu welcher 

Untergrenze die Hämodilution noch als sicher betrachtet werden kann. In der Literatur 

werden Hk-Werte von 20% 97 bis hin zu Werten von 14% bei Niedrig-Risiko-Patienten 

bzw. 17% bei Hoch-Risiko-Patienten empfohlen 53. In letzterer Studie wurden Werte 

unterhalb der genannten Hks als unabhängiger Risikofaktor für die Letalität nach 

ACVB-Operationen beschrieben. Eine weitere große Studie 41 bestätigte die Daten von 

Fang et al 53. Hierbei traten bei Patienten mit niedrigem Hk signifikant häufiger 

frustrane Entwöhnungen von der EKZ auf, so dass die intraaortale 

Ballongegenpulsation (IABP) häufiger eingesetzt werden mußte. Auch andere Organe 

sind durch eine unkritische Hämodilution gefährdet. So wurden bei einer Hämodilution 

bis auf einen Hk von <19% eine erhöhte Inzidenz an akutem Nierenversagen gezeigt 73. 

Des weiteren konnte in einer tierexperimentellen Studie gezeigt werden, dass 

Hämodilution während des Bypasses (Hb 6 g/dl vs. 11 g/dl) zu signifikant mehr 

neurologischen Funktionsstörungen bis hin zum ischämischen Insult, gemessen am 

Volumen infarzierten Hirngewebes, führen 83. Dem gegenüber konnten de Foe et al. 

zwar auch eine erhöhte Inzidenz an cerebralen Insulten auf Grund von Hämodilution 

(Hk <19%) zeigen 41, was allerdings keine statistische Signifikanz erreichte.  

Daher sind nach heutigem Kenntnisstand nur Empfehlungen auszusprechen. Bei einem 

Hk< 23% lässt sich ein Trend in Richtung einer erhöhten Letalität erkennen, während 

Patienten mit einem Hk< 19% eine um das doppelte erhöhte Letalitätsrate aufweisen als 

Patienten mit einem Hk ≥ 25% 41. 
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d.) Hämolyse 

Während einer Herzoperation kann es durch unterschiedliche Mechanismen zu einer 

Hämolyse kommen. Dabei sind zum einen mechanische, zum anderen aber auch 

humorale Ursachen von Bedeutung. Das Pumpensystem einer Herz-Lungen-Maschine 

hat erheblichen Anteil an der Schädigung der Erythrozyten, wobei die Hämolyserate 

vom Pumpentyp abhängig ist. In experimentellen Studien wurde eindeutig 

nachgewiesen, dass Rollerpumpen die korpuskulären Blutbestandteile erheblich mehr 

als Zentrifugalpumpen traumatisieren, abhängig vor allem von der Rollergröße und vom 

Okklusionsgrad 103;138. In klinischen Studien ist die Datenlage allerdings nicht so 

eindeutig, da widersprüchliche Ergebnisse vorliegen 89;118. In vitro-Studien haben 

jedoch auch gezeigt, dass der größte Anteil der Hämolyse nicht auf die Blutpumpe, 

sondern v.a. auf die Kardiotomie-Blutansaugung zurückzuführen ist. Die Ursachen sind 

vermutlich sowohl großer Scherstress als auch erheblicher Blut-Luft-Kontakt 9;87. Das 

Ausmaß des Scherstresses auf die Erythrozyten ist sowohl von der Dauer der 

extrakorporalen Zirkulation wie auch vom Perfusionsdruck abhängig. Durch Blut-Luft-

Kontakt kommt es zu einer Aktivierung von Thrombozyten und Leukozyten, wodurch 

es über eine Freisetzung von vasoaktiven Substanzen und Zytokinen sekundär zu einer 

Schädigung der Erythrozyten kommt 38. 

 

Durch eine Hämolyse werden alle intraerythrozytären Bestandteile freigesetzt, so dass 

es zu einer Erhöhung der LDH-, Laktat- und Kalium-Konzentrationen im Serum 

kommt. Im Gegensatz zu diesen unspezifischen Markern, die bei verschiedensten 

pathologischen Prozessen erhöht sein können, beweist der Nachweis an freiem 

Hämoglobin im Patientenserum eindeutig das Vorhandensein einer Hämolyse. Das 

entstandene Hämoglobin wird zunächst an Serumproteine, vor allem an Haptoglobin, 

gebunden. Wenn diese Serumproteine mit Hämoglobin gesättigt sind, wird freies Hb in 

der Niere filtriert und kann dann mit einer bestimmten Kapazität im proximalen 

Tubulus wieder resorbiert und in Eisen, Globin und Porphyrin abgebaut werden. Wird 

allerdings die Resorptions-Kapazität überschritten, kommt es zur Hämoglobinurie. Bei 

einem Urin-pH <7 kann das Hb-Molekül mit dem im distalen Tubulus vorkommenden 

Tamm-Horsefall-Protein ausfallen. Die hierbei entstehenden Präzipitate können 

Nierenfunktionsstörungen bis hin zum Nierenversagen verursachen. In diversen Studien 

wurde eine Korrelation zwischen vermehrt freigesetztem Hb und schlechter 

postoperativer Nierenfunktion nachgewiesen 131;174;190.  
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e.) Myokardiale Dysfunktion 

Ernste kardiovaskuläre Komplikationen ereignen sich in ca. 10% aller Bypass-

Operationen 120. Eine Multicenter-Studie hat 1997 ermittelt, dass bis zu 25% der 

Patienten nach ACVB-Operationen Kriterien für einen perioperativen Myokardinfarkt 

erfüllten (Nachweis von Q-Zacken im EKG, Erhöhung der CK-MB-Fraktion auf 10%, 

Nachweis ischämischer Myokardareale in der Autopsie) 88. 

 

Systolische Kontraktilitätsstörungen spielen nach Herzoperationen eine entscheidende 

Rolle. Die wichtigste Ursache für die systolische Dysfunktion ist das sogenannte 

Stunning, das von Braunwald und Kloner als verlängerte, postischämische Dysfunktion 

vitalen Herzmuskelgewebes beschrieben worden ist. Im Gegensatz zur Ischämie ist aber 

beim Stunning die Myokardperfusion noch aufrechterhalten, so dass das Stunning einen 

temporären und prinzipiell reversiblen Charakter hat. 21. Diverse Studien haben zeigen 

können, dass es bei jeglicher Art myokardialer Ischämie, sei es nach PTCA 25;187,  bei 

instabiler Angina pectoris 90;136, bei Stress-induzierter Ischämie 100;153, nach 

Myokardinfarkt  50;168 und auch nach aorto-koronaren Bypass-Operationen 16;68;102 zu 

diesem Phänomen kommt. Während der Ischämie treten je nach Ausmaß der Ischämie 

regionale (z.B. bei Verschluss einer Koronararterie) oder globale (z.B. Ischämie 

während der EKZ) Kontraktilitätsstörungen auf, die sich nach Reperfusion erst nach 

Stunden bis Tagen normalisieren 17;77. Die Dauer der Erholung hängt von diversen 

Parametern ab, u.a. von der Länge der Ischämie-Zeit, der Schwere des ischämischen 

Insults und der arteriellen Reperfusion 101.  

 

Darüber hinaus kommt es nach koronarchirurgischen Eingriffen regelhaft  zu 

diastolischen Relaxations- und Compliancestörungen 32;160. Die Dauer dieses 

Phänomens und damit auch die klinische Bedeutung ist bisher nicht eindeutig geklärt. 

Sowohl die intraoperative Ischämie als auch die postischämie Reperfusion werden mit 

diesem Phänomen in Verbindung gebracht 3;162. Wie bereits oben erwähnt, haben auch 

proinflammatorische Zytokine über unterschiedliche Mechanismen 107;121 Einfluss auf 

die globale Hämodynamik und die Ventrikelfunktion 64. Weiterhin kommt es durch den 

kardioplegischen Arrest intraoperativ zum myokardialen Lymphstau, da die 

myokardiale Lymphe normalerweise durch das Schlagen des Herzens „ausgepreßt“ 

wird. Der Lymphstau führt zu einer Ödembildung und bewirkt letztendlich auch eine 

diastolische Compliancestörung 128. Die Bildung von freien Radikalen während der 

EKZ 15;54, aber auch Temperatur-Veränderungen, Art der Kardioplegie, Veränderung 
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der linksventrikulären Geometrie nach Perikarderöffnung und Medikamente können zu 

einer Veränderung der ventrikulären Compliance führen 86;113. Auch durch den 

Sternumverschluss am Ende der Operation nimmt die linksventrikuläre Compliance ab 
46;160.  

 

Durch diese verschiedenen pathophysiologischen Phänomene kann es klinisch in der 

perioperativen Phase zu signifikanten Problemen kommen 16;102. Gray et al. 68 haben 

bereits 1979 eine Abnahme des Herzindexes (HI), der linksventrikulären 

Ejektionsfraktion (LVEF) und des Schlagvolumenindexes (SVI) 1-5 Stunden nach 

ACVB-OPs beschrieben, mit einer vollständigen Erholung 48 Stunden postoperativ. In 

diversen anderen Studien 147;152 konnte gezeigt werden, dass teils bis zu 96% der in die 

Studien eingeschlossenen Patienten postoperativ eine deutlich reduzierte systolische 

Ventrikelfunktion aufwiesen (EF 58% präoperativ zu 37% postoperativ) 22. Die 

Schwere des „stunnings“ und die Dauer der Myokarderholung (4 Stunden versus > 24 

Stunden) ist dabei abhängig von der präoperativen Ventrikelfunktion ( LVEF > 55% vs. 

LVEF < 45%) 119. Auch die Aortenklemmzeit hat wesentlichen Einfluss auf die 

Ausprägung der ventrikulären Dysfunktion 6. Daneben wird die Kontraktilität aber auch 

durch die perioperative Hypothermie reduziert. 111;123. 

 

In der Mehrzahl der Fälle wird myokardiales Stunning gut toleriert und bedarf keiner 

speziellen Therapie. In einigen Fällen, vor allem bei Patienten mit hochgradig 

reduzierter LV-Funktion, langer Aortenklemmzeit, Re-ACVB-OP oder zusätzlichen 

Klappeneingriffen, kann es aber zu schweren hämodynamischen Instabilitäten und einer 

stark eingeschränkten myokardialen Funktion kommen 16. In einer Studie von Weisel 186 

lag die Inzidenz eines Low-Cardiac-Output-Syndroms nach ACVB-OP bei 9,2% mit 

einer Letalität bei diesen Patienten von 16%.  

 

f.) Hypothermie 

Die Anwendung der Hypothermie in der Medizin beruht auf einem nicht-linearen 

Zusammenhang zwischen der Temperatur und der Stoffwechselaktivität. Mit sinkender 

Temperatur sinkt auch die Stoffwechselaktivität, so dass bei einer Temperatur von 15 

°C der Sauerstoffverbrauch nur noch 10% des Verbrauchs bei Normothermie ausmacht 
109. Man unterscheidet zwischen leichter, mäßiger, tiefer und ausgeprägter Hypothermie, 

wobei nur die Definition der Temperaturbereiche für die mäßige Hypothermie 

einheitlich sind [28-32°C] 109;144. Die Anwendung der systemischen Hypothermie in der 
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Herzchirurgie wird mit der pathophysiologischen Situation während der EKZ 

begründet. Ein vorgegebenes nicht-pulsatiles HZV und ein durch Hämodilution 

reduzierter Hb-Gehalt führen zu einer reduzierten Sauerstofftransportkapazität, die 

kaum variabel ist, da die physiologischen, bedarfsorientierten Steuerungsmechanismen 

des HZV außer Kraft gesetzt sind 159. Daher wird in Normothermie neben der 

potenziellen Minderperfusion auch ein Missverhältnis zwischen Sauerstoffangebot und 

–bedarf postuliert. Die durch Hypothermie gesenkte Stoffwechselaktivität soll das 

Missverhältnis senken und vor Ischämie- Schäden schützen. Bis heute steht der Beweis 

der globalen Organprotektion durch diese Maßnahme aus 70. Ebenfalls unbewiesen ist 

die Vorstellung, durch Hypothermie einen gewissen Sicherheitspuffer im 

Sauerstoffangebot zu haben, um mögliche Reduzierungen des Pumpenflusses z.B. bei 

technischen Problemen oder Manipulationen am Herzen kompensieren zu können 137. 

Viele der erwarteten Vorteile der Hypothermie wurden allerdings offenbar überbewertet 

und scheinen nicht zwingend erforderlich zu sein 70. Es gibt keine Unterschiede in der 

zentralvenösen und lebervenösen Sättigung während der Reperfusion und auch die 

Inflammationsreaktion unterscheidet sich nicht, unabhängig davon, ob die Patienten in 

Normo- oder in Hypothermie operiert worden sind 112. Die Lungenfunktion ist 

postoperativ gleichermaßen bei Normothermie wie bei Hypothermie eingeschränkt 145, 

wohingegen für eine Normothermie kürzere Nachbeatmungsphasen, ein kürzerer 

Intensivaufenthalt und eine Kostenreduktion beschrieben sind, was möglicherweise 

darauf zurückzuführen ist, dass in Normothermie ein besserer Gerinnungsstatus, 

weniger Wundinfektionen und Bluttransfusionen und eine schnellere Extubation 

erreicht werden können 137. Es muss auch bedacht werden, dass sich eine systemische 

Hypothermie auf die einzelnen Organe und deren Funktion unterschiedlich auswirken 

können. Besonderer Bedeutung kommt in der Kardiochirurgie die Protektion von Herz 

und Gehirn zu, die im Fokus diverser Untersuchungen steht. Da das Herz während des 

Aortenclampings nicht mehr mit Sauerstoff versorgt wird, wurde bereits in den 

Anfängen der Herzchirurgie nicht nur die systemische Hypothermie, sondern auch die 

topische Kühlung mit Eiswasser zur Myokardprotektion eingesetzt. Mit der 

Entwicklung kardioplegischer Lösungen, die intrakoronar infundiert werden, erreicht 

man einen weiteren myokardialen Schutz, um ausreichend lange OP- und Ischämie-

Zeiten zu ermöglichen. Dabei macht der kardioplegische Herzstillstand ca. 90 % der  

Protektion aus 61. Somit hat die Hypothermie nur einen geringen Anteil an der 

Kardioprotektion. In klinischen Untersuchungen hat auch die lokale Kühlung keine 

zusätzlichen Vorteile gezeigt 61. Vielmehr kann es zu kältebedingten Komplikationen 



22 
 

wie z.B. Phrenikusparesen kommen 20. Nur bei Risikopatienten oder bei langen 

Ischämiezeiten könnte eine zusätzliche Kühlung Vorteile bringen 143;155. Auf Grund 

aktueller Arbeiten wird daher zunehmend in Normothermie oder in milder systemischer 

Hypothermie operiert 155;159.  Ob sich ein bestimmtes Konzept zur Myokardprotektion 

auf Dauer durchsetzen wird (als „evidence based“) oder ob eine differenzierte 

Indikationsstellung für die einzelnen Protektionstechniken erarbeitet wird, bleibt 

allerdings abzuwarten.  

Durch Hypothermie wird auch die metabolische Aktivität des Gehirns und damit die 

Sauerstoffausschöpfung im Vergleich zur Normothermie reduziert 92, und zwar um ca. 

6-7%/°C 183. Man nimmt an, dass zusätzlich zu den metabolischen Mechanismen aber 

auch andere neuroprotektive Mechanismen beteiligt sind 143;155. Hypothermie reduziert 

u.a. die Exkretion exzitatorischer Neurotransmitter und den Ca2+-Einstrom, schützt die 

Blut-Hirn-Schranke, beschleunigt die Erholung der Proteinbiosynthese und verringert 

die NO-Synthetase-Aktivität 70;137. Demgegenüber konnten Untersuchungen zeigen, 

dass Hypothermie auf die neurokognitiven Funktionen keinen protektiven Effekt hat 
70;137. 

Zusammenfassend scheint anhand der aktuellen Datenlage gesichert, dass Hypothermie 

nur einen neuroprotektiven Effekt hat, wohingegen sie zur Myokardprotektion keinen 

wesentlichen Beitrag leistet 159.  
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4. Lösungsansätze 

Um die oben geschilderten Probleme zu vermeiden und Komplikationen zu reduzieren, 

wird seit Jahrzehnten intensiv an Lösungsstrategien gearbeitet. Hierbei muss man 

zwischen pharmakologischen und nicht-pharmakologischen Ansätzen unterscheiden, 

wobei sich die vorliegende Arbeit ausschließlich mit letzteren befasst hat. 

 

Tabelle 1:  Probleme, die durch die EKZ verursacht werden und mögliche 

Lösungsansätze 

Problem Lösungsansatz 

Aktivierung des Immunsystems Verringerung der Fremdoberfläche 

Verringerung des Blut-Luft-Kontakts 

Normothermie 

Gerinnungsstörung Verringerung der Fremdoberfläche 

Verringerung des Blut-Luft-Kontakts 

Normothermie 

Hämolyse Neuartiges Pumpendesign 

(Mikrodiagonalpumpe) 

Hämodilution Verringerung des Priming-Volumens 

Ventrikuläre Dysfunktion Normothermie 

Verzicht auf kardioplegischen Arrest 

 

Mögliche Strategien beinhalten hierbei die Reduktion der Fremdoberfläche, die 

Verminderung des Priming-Volumens, den Einsatz von Mikrodiagonal- statt 

Rollerpumpen, den Erhalt der Normothermie und den Verzicht auf einen 

kardioplegischen Arrest.  

Diese Lösungsansätze hat man u.a. mittels miniaturisierter Herz-Lungen-Maschinen 

(wie z.B. der in der vorliegenden Untersuchung verwendeten Delta Stream- [Medos, 

Deutschland] und CORx- [Cardiovention,  Santa Clara, USA]) Systeme zu 

verwirklichen versucht. 
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5. Studienziel 

Wie in der Einleitung ausführlich geschildert, ist der Einsatz der extrakorporalen 

Zirkulation bei herzchirurgischen Operationen mit zahlreichen klinisch relevanten 

Nebenwirkungen wie die systemische Aktivierung des Immunsystems, Störungen des 

Gerinnungssystems, Hämolyse, Hämodilution und Beeinträchtigung der globalen 

Hämodynamik vergesellschaftet. Diese sind v.a. auf eine generalisierte 

Entzündungsreaktion durch den Kontakt mit extrakorporalen Fremdoberflächen, die 

intraoperative Hypothermie, die mechanische Beeinträchtigung des Blutes durch die 

verwendeten Blutpumpen und Verdünnungseffekte durch das extrakorporale Volumen 

der verwendeten EKZ-Systeme zurückzuführen. Daraus ergab sich die Hypothese, dass 

eine Miniaturisierung der EKZ durch die Reduktion der Fremdoberfläche und/oder des 

extrakorporalen Volumens wie auch der Verzicht auf eine Hypothermie diese 

Nebenwirkungen abschwächen bzw. vermeiden könnte.  

In der hier vorliegenden prospektiv randomisierten Pilot-Studie wurden daher jeweils 

15 Patienten drei unterschiedlichen Untersuchungsgruppen zugeordnet. In der 

Kontrollgruppe wurden 15 Patienten mit einer konventionellen HLM im 

kardioplegischen Arrest und in milder Hypothermie operiert, zwei Gruppen mit jeweils 

15 Patienten unterzogen sich der Operation am schlagenden Herzen in Normothermie 

mit Unterstützung durch ein miniaturisiertes Bypass-System. Ziel dieser Pilotstudie war 

es, den Einfluss unterschiedlicher Bypass-Systeme (konventionelle HLM vs. Mini-

HLM) und unterschiedlicher Operationstechniken (kardioplegischer Arrest in milder 

Hypothermie vs. Operation am schlagenden Herzen in Normothermie) auf die unten 

definierten primären und sekundären Zielvariablen zu untersuchen und mögliche 

Unterschiede festzustellen, um letztlich eine Aussage über mögliche Vorteile der neuen 

Bypass-Systeme gegenüber der konventionellen Herz-Lungen-Maschine treffen zu 

können. 

Als primäres Studienziel wurden die Auswirkungen der unterschiedlichen Verfahren auf 

die intraoperative Hämodynamik untersucht. Diese ist nach Operationen unter Einsatz 

der EKZ häufig signifikant beeinträchtigt, u.a. als Resultat von 

Volumenverschiebungen, abnehmender kardialer Vorlast und damit auch des 

Herzzeitvolumens 81. Diese Phänomene sind klinisch von herausragender Relevanz, da 

sie zu einer Beeinträchtigung des globalen Sauerstoffangebots und der Mikrozirkulation 

beitragen und im schlimmsten Falle die Entwicklung eines (Multi-)Organversagens 

triggern können 163. Daneben sind sie einer der wichtigsten Gründe, warum 
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herzchirurgische Patienten nahezu obligat postoperativ auf einer Intensivstation betreut 

werden müssen. Daher wurden der intrathorakale Blutvolumenidex (ITBI) und der 

Herzzeitvolumenindex (HI) als primäre Zielvariablen definiert. Sekundäre Zielvariablen 

waren weitere hämodynamische Parameter, der Katecholaminbedarf, Gerinnungs- und 

Hämolyseparameter, Marker des myokardialen Zellschadens sowie die Konzentration 

zirkulierender pro- und antiinflammatorischer Zytokine. Dabei wurde IL-6 als 

Schlüsselmediator der proinflammatorischen und IL-10 als Schlüsselmediator der 

antiinflammatorischen Reaktion definiert. Der Anstieg proinflammatorischer Zytokine 

korreliert signifikant mit einem schlechteren Outcome nach herzchirurgischen 

Eingriffen 75;106. Darüber hinaus konnte gezeigt werden, dass sowohl IL-6 als auch IL-

10 zentrale Rollen in der Kontrolle der perioperativen Hämodynamik und dem 

myokardialen Zellschaden nach EKZ spielen 76;189. 
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II. Patienten und Methoden 

 

1. Patienten 

Nach Prüfung und Genehmigung des Studienprotokolls durch die Ethikkommission und 

schriftlicher Einwilligung wurden 45 Patienten, bei denen aufgrund einer koronaren 

Herzerkrankung die Indikation zur operativen Myokardrevaskularisation gestellt 

worden war, in die Studie eingeschlossen. Die Entscheidung über den Einschluss in die 

Studie wurde vom Operateur getroffen. Per Losverfahren wurden die Patienten den 

einzelnen Studiengruppen zugeordnet.  

 

Tabelle 2: Ein- und Ausschlusskriterien 

 

Einschlusskriterien Ausschlusskriterien 

Volljährigkeit Minderjährigkeit 

Elektiver oder dringlicher 

kardiochirurgischer Eingriff 

Nofallmäßiger kardiochirurgischer Eingriff 

Schriftliche Einwilligung zur 

Teilnahme an der Studie 

Nicht einwilligungsfähige Patienten bzw 

fehlende schriftliche Einwilligung 

 Mögliche oder bestehende Schwangerschaft 

 Akuter Myokardinfarkt oder akute myokardiale 

Dekompensation 

 Intrakardiale Shunts 

 Signifikante Erkrankungen der Herzklappen 

 Stark eingeschränkte linksventrikuläre Funktion 

mit  Ejektions-Fraktion (EF) <30 % 

 Periphere arterielle Verschlusskrankheit (pAVK) 
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2. Anästhesie 

Am Vorabend der Operation erhielten die Patienten zur Prämedikation 10 mg 

Oxazepam per os, sowie am OP-Morgen 15-30 µg/kg Flunitrazepam per os ca. eine 

Stunde vor Beginn der Narkoseeinleitung. Nach Präoxygenierung mit 100% Sauerstoff 

wurde die Narkose mittels Etomidate (Etomidat-Lipuro 2%ig, B. BRAUN Melsungen 

Ag) (0,1-0,2 mg/kg) und Sufentanilhydrogencitrat (Sufenta, JANSSEN-CILAG GmbH, 

Neuss) (0,5-2 µg/kg) eingeleitet. Eine Muskelrelaxation wurde zur Schaffung optimaler 

Intubationsbedingungen mittels Rocuronium (Esmeron 1%ig, ORGANON, Eragny sur 

Epte, France) (1 mg/kg) durchgeführt. Die Narkose wurde mit Isofluran (0,5 MAC) und 

kontinuierlicher Infusion von Sufentanil (2 µg/kg/h) aufrechterhalten. Während der 

Extrakorporalen Zirkulation  dienten die Sufentanil-Infusion und zusätzliche Boli von 

Midazolam (0.05-0.1 mg/kg) zur Narkoseführung. 

 

3. Extrakorporale Zirkulation 

Die Patienten wurden randomisiert drei Untersuchungsgruppen zugeteilt (Tabelle 3): 

15 Patienten wurden mit der konventionellen HLM (HL-20, Jostra, Hirrlingen, 

Deutschland) mit einem Priming-Volumen von 1900 ml operiert (Gruppe 1). Die 

Operation wurde in milder Hypothermie (28-32°C) durchgeführt. Direkt nach dem 

Abklemmen der Aorta mit einer Aortenklemme wurde durch antegrade Infusion von 

2000 ml kristalloider kardioplegischer Bretschneider-Lösung (Custodiol®,Köhler 

Chemie, Alsbach-Hähnlein, Deutschland) in die Aortenwurzel ein Herzstillstand 

induziert. 

Zwei Gruppen mit je 15 Patienten unterzogen sich der Operation am schlagenden 

Herzen („beating heart surgery“) mit Unterstützung einer miniaturisierten Herz-Lungen-

Maschine („Simplified Bypass System“; SBS): 

15 Patienten wurden randomisiert dem Delta Stream®-System (Medos AG, Stolberg, 

Deutschland) zugeordnet. Dieses System weist  eine Fremdoberfläche auf, die mit dem 

einer konventionellen HLM zu vergleichen ist, aber ein geringeres Priming-Volumen 

aufweist (Gruppe 2). 

Bei den verbleibenden 15 Patienten wurde das CorX®-System (CardioVention, Santa 

Clara, CA, USA), ein System mit deutlich verringerter Fremdoberfläche und 

reduziertem extrakorporalen Volumen, eingesetzt (Gruppe 3). 

Beide SBS wurden mit 600 ml kristalloider Priming-Flüssigkeit gefüllt (NaCl-Lösung, 

Delta Pharma, Pfullingen, Deutschland). 
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Tabelle 3: Charakteristika der Bypass-Systeme 

 

 Konventionelle 

HLM 

Simplified Bypass System (SBS) 

 HL-20 

(Jostra, 

Deutschland) 

Delta Stream 

(Medos, 

Deutschland) 

CORx 

(Cardiovention,  

Santa Clara, USA) 

Gruppe 1 2 3 

Anzahl der 

Studienpatienten n 

15 15 15 

Operationsart Kardioplegischer 

Arrest 

Beating Heart  Beating Heart 

Temperatur Milde Hypothermie  Normothermie Normothermie 

Priming-Volumen [ml] 1900 

[Ringer-Lactat: 

1000 

HAES 10%: 500 

Mannitol 15%:250 

NaHCO3 8,4%: 100 

Aprotinin: 100] 

600 [NaCl 0,9%] 600 [NaCl 0,9%] 

Kardioplegie-Lösung 2000 ml 

Bretschneider 

Keine Keine 

Oxygenator Hohlfasermembran 

mit integriertem 

Wärmetauscher 

(Medos Hilite 

7000, Deutschland) 

Hohlfasermembran 

mit integriertem 

Wärmetauscher 

(Medos Hilite 7000, 

Deutschland) 

Hohlfasermembran 

(CORx IOS, 

USA) 

Reservoir Hartschalen-

Reservoir 

(Medos Hilite 

MV 420, 

Deutschland) 

Kein Kein 

Filter Arteriell, 40 µm 

Porengröße 

(Medos 

Thermicon 

Deutschland, ) 

Kein Kein 

Pumpentyp Rollerpumpe Mikrodiagonalpumpe Zentrifugalpumpe 

Blutfluss [l/min] 0-6,5 0-10 0-6,5 

Umdrehungen/Minute 0-250 1000-10000 0-5500 

Fremdoberfläche [m²] ≈ 2,7 ≈ 2,4 ≈ 1,2 
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Es wurden keine Heparin-beschichteten Oberflächen verwendet. Für die extrakorporale 

Zirkulation wurde der rechte Vorhof mit einer venösen Kanüle und die Aorta ascendens 

mit einer arteriellen Kanüle (Hilite®D, Medos AG, Stolberg, Deutschland) kanüliert. 

Die EKZ wurde mit einem nicht-pulsatilen Fluß von 2,2 l min/m² durchgeführt. Vor der 

Narkoseeinleitung wurden jedem der Studienpatienten 500 mg Methylprednisolon 

injiziert. Zusätzlich erhielt jeder Patient insgesamt 3.000.000 KIE Aprotinin, jeweils 

1.000.000 KIU vor, während (entweder als Bestandteil des Priming-Volumens bei der 

konventionellen HLM oder als i.v.-Gabe bei den SBS) und nach der EKZ. Vor der EKZ 

wurde durch Gabe von 300 U kg–1 Heparin eine ACT (activated clotting time; bedside-

test zur Überprüfung der Blutgerinnung) von >400s angestrebt, um eine vollständige 

Ungerinnbarkeit des Bluts während der EKZ zu gewährleisten. Nach Entwöhnung von 

der Herz-Lungen-Maschine wurde Heparin mit Protamin im Verhältnis 1:1 

antagonisiert. 

 

4. Chirurgische Technik 

Bei allen Patienten wurde eine mediane Sternotomie durchgeführt. Bei der 

konventionellen HLM wurden sowohl die distalen als auch die proximalen 

Anastomosen während des kardioplegischen Herzstillstandes angelegt. Im Gegensatz 

dazu wurden in den SBS-Gruppen die distalen Anastomosen mit Hilfe eines 

mechanischen Stabilisators (Axius®, Guidant, Diegem, Belgium) und die proximalen 

Anastomosen bei tangentialer partieller Abklemmung der Aorta ascendens angelegt.  

Wundblut wurde entweder  durch den Kardiotomie-Sauger (konventionelle HLM) 

abgesaugt und im Reservoir der HLM gesammelt, oder (SBS-Gruppen) mit Hilfe eines 

Cell-Savers (CATS, Fresenius Medical Care, Bad Homburg, Deutschland) gesammelt, 

aufbereitet und sofort retransfundiert. Blut, das sich nach Ende der EKZ noch in den 

HLMs befand, wurde ebenfalls noch intraoperativ retransfundiert.  

 

5. Hämodynamisches Management 

Das intraoperative hämodynamische Management war an unserem abteilungsinternen 

klinischen Standard orientiert. Der Basis-Flüssigkeitsbedarf wurde mit Infusion von 

1 ml/kg/h  kristalloider Lösung gedeckt. Hämodynamische Stabilität wurde definiert als 

ein Herzzeitvolumenindex (HI; cardiac index: CI) > 2,5 l/min/m² und ein arterieller 

Mitteldruck (MAD) von > 70 mmHg. Im Falle einer Hypovolämie (definiert als ITBI = 

Intrathorakaler Blutvolumen Index < 850 ml/m² ) wurden kolloidale Lösungen 
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infundiert (Hydroxyethylstärke HES 130/0.4, Voluven®, Fresenius Kabi, Bad Homburg 

v.d.H., Deutschland). Erythrozytenkonzentrate (EK) wurden bei einem Hämoglobin-

Gehalt (Hb) von weniger als 7,0 g/dl transfundiert. Während der EKZ wurde der 

arterielle Blutdruck vornehmlich durch kristalloiden Flüssigkeitsersatz aufrechterhalten. 

Nach der EKZ wurde bei Abfall des HI unter 2,5 l/min/m² eine kontinuierliche Infusion 

von Adrenalin gestartet. Sofern eine hämodynamische Stabilität durch alleinige 

Flüssigkeitssubstitution nicht gewährleistet werden konnte und der systemische 

vaskuläre Widerstand unter 1500 dyn s/cm5/m² gefallen war, wurde Noradrenalin 

titrierend appliziert.  

 

6. Hämodynamisches Monitoring 

Vor der Narkoseeinleitung wurde ein Thermodilutionskatheter (PV2015L20A 

Pulsiocath 5F Thermodilutionskatheter 20 cm, PULSION Medical Systems, München, 

Deutschland) in der Femoralarterie platziert. Nach der Einleitung wurde die rechte Vena 

jugularis interna punktiert und ein zentralvenöser Katheter (AG-15854-E; Arrow 

International; Reading, PA, USA) vorgeschoben.  

Folgende hämodynamische Parameter wurden kontinuierlich aufgezeichnet (S/5, Datex-

Ohmeda, Duisburg, Deutschland): 

-  invasive Blutdruckmessung: MAD [mmHg] 

- zentralvenöser Druck: ZVD [mmHg] 

- Herzfrequenz: HF [1/min] 

 

Zu festgelegten Zeitpunkten (s.u.) wurden mittels transpulmonaler Thermodilution 

(PiCCOplus V 5.2.2, Pulsion Medical Systems, München, Deutschland) intermittierend 

bestimmt: 

 

 

 

 Herzzeitvolumen: 

    HZV= [(Tb-Ti)*Vi*K]/[∫∆ Tb*dt]  [l/min] 

    Berechnung nach Stewart-Hamilton, mit: 

    Tb:  Bluttemperatur  

    Ti:  Temperatur der injizierten Lösung (Injektat) 

    Vi:  Injektatvolumen 
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    ∫∆ Tb*dt: Fläche unter der Thermodilutionskurve 

    K:  Korrekturkonstante  

Schlagvolumen:   SV= HZV/HF 

 

Systemischer vaskulärer Widerstand: 

    SVR= [(MAP-ZVD)/HZV] * 80 [dyn*s/cm5] 

 

Intrathorakales Blutvolumen: 

    ITBV= 1,25* GEDV 

    ITBV:  intrathorakales Blutvolumen 

    GEDV: globales enddiastolisches Volumen  

      (GEDV= HZV*(MTtTDa-DStTDa) 

      MTt TDa: mittlere Durchgangszeit des  

      Kältebolus vom Ort der Injektion bis zum 

Ort der Messung 

      DSt TDa: exponentielle Abfallzeit der  

      transpulmonalen Thermodilutionskurve 

 

Extravasales Lungenwasser: 

    EVLW= ITTV-ITBV 

    ITTV:  intrathorakales Thermovolumen 

 

Diese Werte wurden zur besseren Vergleichbarkeit auf die Körperoberfläche  

(KOF = √(Größe [cm] x Gewicht [kg] / 3600)  indiziert: 

- Herzindex: HI 

- Schlagvolumenindex: SVI  

- Systemischer vaskulärer Widerstandsindex: SVRI 

- Intrathorakaler Blutvolumenindex: ITBI 

- Extravasaler Lungenwasserindex: ELWI 

 

Die Thermodilutionsmessungen wurden durch dreimalige Injektion von je 20 ml 

eisgekühlter physiologischer 0,9%iger NaCl-Lösung über einen Schenkel des 

zentralvenösen Zugangs in den rechten Vorhof durchgeführt.  
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7. Laborparameter  

Die Blutproben wurden in endotoxin-freie Vakuum-Entnahme-Röhrchen entnommen 

(Monovettes, Sarstedt, Nümbrecht, Deutschland). Aus dem Blutserum wurde 

Haptoglobin als Hämolyseparameter bestimmt. Aus Citrat-Blut wurden zum einen 

Gerinnungsparameter (TPZ, aPTT, TZ, AT III, Fibrinogen, D-Dimere), zum anderen 

freies Hämoglobin (freies Hb) und zuletzt immunologische Parameter (Tumor-Nekrose-

Faktor (TNF)-α, Interleukin (IL)-1β, IL-6, IL-10 und Interferon (IFN)-γ) bestimmt. Aus 

EDTA-Blut wurden die Thrombozyten- und Leukozyten-Konzentrationen bestimmt. 

Die Blutgasanalyse (unter Verwendung heparinisierten Blutes) diente zur Bestimmung 

von ScvO2 (ScvO2= zentralvenöse Sättigung),  Lactat und Hämatokrit. Die Bestimmung 

der Gerinnungs- und Hämolyse-Parameter, der Marker des myokardialen Zellschadens 

sowie die Analyse des Blutbilds wurden durch das Zentrallabor des UK Aachen 

durchgeführt. Die Blutgasanalysen wurden zeitnah im OP durchgeführt (ABL 700, 

Radiometer Kopenhagen, Brønshøj, Dänemark). Im Gegensatz dazu musste zur 

Bestimmung der immunologischen Faktoren das Citrat-Blut zunächst weiterverarbeitet 

werden. Durch 10-minütige Zentrifugation bei 2000G und 4°C wurde das Plasma von 

den Blutzellen getrennt und bei –80°C bis zur Analyse, die im Schnitt eine Woche nach 

Entnahme, Zentrifugation und Konservierung stattfand, eingefroren. Mittels ELISA-

Tests (BD Biosciences, San Diego, CA, USA) wurden die Plasmaspiegel von Tumor-

Nekrose-Faktor (TNF)-α, Interleukin (IL)-1β, IL-6, IL-10 und Interferon (IFN)-γ 

bestimmt.  
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Tabelle 4: Zusammenfassung der in der vorliegenden Arbeit bestimmten 

Laborparameter. Zusätzlich sind bei einigen Parametern die laborspezifischen 

Normbereiche angegeben. 

Gerinnungsparameter 

Thromboplastinzeit (QUICK-Wert) TPZ (70-130 %) 

Aktivierte partielle Thromboplastinzeit aPTT (28-38 s) 

Thrombinzeit TZ (14-21 s) 

D-Dimere D-Dimere (<500 µg/l) 

Fibrinogen Fibrinogen (2,0-4,5 g/l) 

Antithrombin III AT III (75-125 %) 

Hämolyseparameter 

Haptoglobin Haptoglobin (0,3-2,0 g/l) 

Freies Hämoglobin Freies Hb (19-50 mg/l) 

Immunologische Parameter 

Tumor-Nekrose-Faktor α TNF-α  

Interleukin 1-β IL-1β 

Interleukin 6 IL-6 

Interleukin 10 IL-10 

Interferon γ IFN-γ 

Blutgasanalyse 

Zentralvenöse Sauerstoff-Sättigung ScvO2 

Hämatokrit Hkt (0,40-0,54 l/l) 

Lactat Lac 

Blutbild 

Thrombozyten-Konzentration Thrombos (150-350 G/l) 

Leukozyten-Konzentration Leukos (4,3-10,0 G/l) 

 

Sowohl die Blutentnahmen als auch die hämodynamischen Messungen wurden zu klar 

definierten Zeitpunkten durchgeführt: 
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Tabelle 5: Messprotokoll für perioperative hämodynamische Messungen und 

Bestimmung der Laborparameter. 

 

Zeitpunkte Hämodynamik Labor 

OP-Morgen T 0  L 

Narkoseeinleitung T I H L 

Schnitt T II  L 

Sternotomie T III H  

EKZ-Anfang T IV H L 

EKZ T V  L 

EKZ-Ende T VI H L 

Sternumverschluss T VII H  

OP-Ende T VIII H L 

6h postop T IX  L 

12h postop T X  L 

1.d postop T XI  L 

3.d postop T XII  L 

5.d postop T XIII  L 

 

 

 

 

8. Statistik 

Die Daten in den Tabellen und Graphiken sind als Mittelwert (± Standardabweichung) 

bzw. als Median (Minimum-Maximum) angegeben. Die Ergebnisse wurden mit einer 

kommerziell verfügbaren Software statistisch analysiert (Statistica for Windows 

version 6.0, Statsoft, Tulsa, OK, USA). Unterschiede innerhalb und zwischen den 

Untersuchungsgruppen wurden mittels des Fischer’s Exact Test und der Varianzanalyse 

(Two-Way-ANOVA mit Messwiederholungen, einfaktorielle ANOVA) getestet 110 115 
116 114. Im Falle von signifikanten Unterschieden wurde als Post-Hoc-Test der TUKEY-

HSD-Test durchgeführt. Das Signifikanzniveau lag bei p<0,05. 
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III. Ergebnisse 

 

1. Präoperative Kenngrößen 

Die demographischen und biometrischen Daten waren in allen drei 

Untersuchungsgruppen vergleichbar (s. Tabelle 6). Auch in Bezug auf kardiale 

Risikofaktoren (s. Tabelle 7) und die präoperative kardiale Dauermedikation (s. Tabelle 

8) gab es keine wesentlichen Unterschiede. 

 

Tabelle 6: Biometrie und Demographie 

 

 Gruppe 1: HLM 

Anzahl n=15 

Gruppe  2: DS 

n=15 

Gruppe 3: CorX 

n=15 

Geschlecht (m/w) 15/0 13/2 14/1 

Alter (J) $ 64 ± 8 62 ± 8 64 ± 11 

Größe (cm) $ 175 ± 7 172 ± 6 174 ± 7 

Gewicht (kg) $ 90 ± 13 80 ± 9 89 ± 14 

KOF (m²) $ 2,09 ± 0,19 1,95 ± 0,14 2,07 ±  0,18 

 
$ Die Daten sind als Mittelwerte ± Standardabweichung angegeben. 

 

 

Tabelle 7: Verteilung der kardialen Risikofaktoren 

 

 Gruppe 1: HLM Gruppe 2: DS Gruppe 3: CorX 

Diabetes mellitus 4/15 2/15 5/15 

Hyperlipoproteinämie 8/15 12/15 11/15 

Hyperurikämie 1/15 2/15 2/15 

Adipositas 10/15 5/15 11/15 

Nikotin 4/15 8/15 11/15 

Arterieller Hypertonus 14/15 13/15 11/15 
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Tabelle 8: Anzahl der Patienten mit präoperativer kardialer Dauermedikation 

 

 Gruppe 1: HLM Gruppe 2: DS Gruppe 3: CorX 

Beta-Blocker 12/15 13/15 12/15 

Diuretika 6/15 2/15 3/15 

ACE-Hemmer 7/15 8/15 8/15 

Nitrat 6/15 6/15 9/15 

andere Substanzen 3/15 2/15 6/15 
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2. Ergebnisse der perioperativen Messungen 

 

a.) chirurgisch-operative Kenngrößen 

Alle drei Untersuchungsgruppen waren in Bezug auf die Anzahl der betroffenen 

Koronargefäße, der Anzahl der aortokoronaren Bypässe, der OP- und der Bypass-Zeit 

miteinander vergleichbar. Die Unterschiede in den Ischämie-Zeiten und den 

Temperaturen während der EKZ ergeben sich automatisch aus dem Studiendesign (s. 

Tabelle 9). 

 

Tabelle 9: Chirurgisch-operative Kenngrößen 

 

OP-Daten Gruppe 1: HLM Gruppe 2: DS Gruppe 3: CorX 

Anzahl der betroffenen 

Gefäßeα 

3 (2-3) 3 (2-3) 3 (1-3) 

Anzahl der Bypässeα 3 (2-5) 3 (2-4) 3 (1-5) 

OP-Dauer (min)$ 211 ± 27 222 ± 22 222 ± 56 

EKZ-Zeit (min)$ 100 ± 27 109 ± 18 107 ± 43 

Ischämie-Zeit (min)$ 55 ± 16 0  0  

Temperatur während 

der EKZ (°C)$ 

31,6 ± 1,0 36,8 ± 0,5 # 35,9 ± 0,8 #,^ 

 

α Die Daten sind als Median (Minimalwert-Maximalwert) angeben.  

$ Die Daten sind als Mittelwerte ± Standardabweichung angegeben. 

# = P < 0.01 vs. Gruppe 1; ^ = P < 0.05 vs. Gruppe 2 
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b.) Hämodynamik 

Während der gesamten perioperativen Phase (inklusive EKZ-Zeit) gab es in Bezug auf 

hämodynamische Parameter in den drei Prüfgruppen keine statistisch signifikanten 

Unterschiede. In allen Gruppen konnte nach der EKZ ein signifikanter Anstieg der 

Herzfrequenz (s. Tabelle 10) und des Herz-Index (s. Abbildung 5) beobachtet werden, 

was mit einem signifikanten Abfall des SVRI (s. Tabelle 10) vergesellschaftet war. Das 

intrathorakale Blutvolumen (s. Abbildung 6) unterschied sich in den drei 

Untersuchungsgruppen zu allen Zeitpunkten nicht. Gleiches galt für den arteriellen 

Mitteldruck (MAD) (s. Tabelle 10), den zentralvenösen Druck (ZVD) (s. Tabelle 10) 

und den Schlagvolumen-Index (SVI) (s. Tabelle 10), die während der kompletten 

Messperiode unverändert blieben. Auch die zentralvenöse Sauerstoff-Sättigung ScvO2 

8s. Tabelle 10) war während des gesamten Studienverlaufs in allen drei Gruppen gleich. 

Die Laktat-Spiegel (s. Tabelle 10) waren in allen Gruppen nach der EKZ signifikant 

erhöht, den niedrigsten Wert fand man aber bei DeltaStream-Patienten vor. Auch die 

Anzahl der Patienten, die nach der EKZ kontinuierlich Noradrenalin erhalten haben (s. 

Tabelle 11), war in allen Gruppen gleich. Allerdings musste bei den SBS-Gruppen das 

Noradrenalin signifikant höher dosiert werden, um den systemisch vaskulären 

Widerstand (SVRI) so anzuheben, dass die vorher definierten Werte für 

hämodynamische Stabilität am Ende des operativen Eingriffs erreicht werden konnten. 

Im Gegensatz dazu war die Adrenalindosis zur Steigerung des kardialen Outputs in 

allen Gruppen zum OP-Ende vergleichbar (s. Tabelle 11). Allerdings erhielten im 

Vergleich zur konventionellen HLM in den SBS-Gruppen signifikant weniger Patienten 

Adrenalin. 
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Abbildung 5: Intraoperativer Verlauf des Herzzeitvolumenindexes. 
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TI = nach Narkoseeinleitung, TIII= nach Sternotomie, TIV= vor EKZ, TVI=nach EKZ, 

TVII= nach Sternumverschluss, TVIII= OP-Ende  

+ = P < 0,05 vs. T I  

 

 

Alle Blox-Plots zeigen die Werte zwischen der 25%- und der 75%-Perzentile, die Linie 

innerhalb der Box Plots entspricht dem Median. Die Fehlerbalken geben die 5%- und 

die 95%-Perzentile an. 
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Abbildung 6: Intraoperativer Verlauf des Intrathorakalen Blutvolumenindexes. 
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TI = Narkoseeinleitung, TIII= Sternotomie, TIV= vor EKZ, TVI= nach EKZ, TVII= 

Sternumverschluss, TVIII= OP-Ende 

° = P < 0,05 vs. T III 

# = P < 0,05 vs. HLM 
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Tabelle 10: Hämodynamische Parameter  

 

 Gruppe 1: HLM Gruppe 2: DS Gruppe 3: CORx 

HF (min-1) TIII 50 ± 9 55 ± 13 62 ± 15 

TVI 86 ± 7°° 85 ± 12°° 88 ± 12°° 

TVIII 85 ± 7°° 81 ± 8°° 89 ± 8°° 

MAD (mmHg) TIII 78 ± 15 79 ± 26 75 ± 9 

TVI 80 ± 10 78 ± 11 73 ± 8 

TVIII 76 ± 7 78 ± 11 71 ± 7 

ZVD (mmHg) TIII 12 ± 2 11 ± 3 12 ± 2 

TVI 10 ± 2 10 ± 2 10 ± 2 

TVIII 12 ± 2 11 ± 3 12 ± 3 

SVI (ml·m-2) TIII 43 ± 10 42 ± 12 37 ± 11 

TVI 44 ± 12 43 ± 12 37 ± 10 

TVIII 42 ± 10 42 ± 9 35 ± 8 

SVRI  

(dyn·sec·cm-5·m-2) 

TIII 2463 ± 528 2404 ± 660 2365 ± 486 

TVI 1607 ± 437°° 1639 ± 583°° 1626 ± 320°° 

TVIII 1537 ± 448°° 1662 ± 416°° 1559 ± 311°° 

SvO2 (%) TIII 80 ± 7 82 ± 5 81 ± 4 

TVI 83 ± 7 81 ± 6 76 ± 9 

TVIII 78 ± 7 80 ± 6 81 ± 8 

Lactat (mmol·l-1) TIII 0,8 ± 0,2 0,7 ± 0,2 0,7 ± 0,3 

TVI 2,0 ± 0,8°° 1,1 ± 0,4°,# 1,4 ± 0,8°° 

TVIII 2,3 ± 0,7°° 1,3 ± 0,4°°,## 1,8 ± 1,1°° 

 

TIII= nach Sternotomie, TVI= nach EKZ, TVIII= OP-Ende 

HF= Herzfrequenz, MAD= mittlerer arterieller Druck, ZVD= zentralvenöser Druck, 

SVI= Schlagvolumenindex, SVRI= Systemisch vaskulärer Widerstandsindex, SvO2= 

zentral-venöse Sauerstoffsättigung 

Die Daten sind als Mittelwerte ± Standardabweichung angegeben. 

° (°°) = P < 0,05 (0,01) vs. TIII; # (##) = P < 0,05 (0,01) vs. Gruppe 1 
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Tabelle 11: Intraoperative Katecholamintherapie 

 

 Gruppe 1: HLM Gruppe 2: DS Gruppe 3: CORx 

Anzahl der 

Patienten mit 

Noradrenalin-

Medikation 

TIII 0/15 0/15 0/15 

TVI 8/15 10/15 10/15 

TVIII 12/15 12/15 12/15 

Noradrenalin-Dosis 

(µg·kg·min-1)$ 

TIII - - - 

TVI 0,04 ± 0,01 0,05 ± 0,02 0,06 ± 0,02 

TVIII 0,03 ± 0,02 0,07 ± 0,03 ## 0,06 ± 0,02 ## 

Anzahl der 

Patienten mit 

Adrenalin-

Medikation 

TIII 0/15 0/15 0/15 

TVI 14/15 7/15 ## 7/15 ## 

TVIII 14/15 6/15 ## 8/15 # 

Adrenalin-Dosis 

(µg·kg·min-1)$ 

TIII - - - 

TVI 0,02 ± 0,01 0,02 ± 0,01 0,03 ± 0,01 

TVIII 0,02 ± 0,01 0,02 ± 0,01 0,03 ± 0,01 

 

TIII= nach Sternotomie, TVI= nach EKZ, TVIII= OP-Ende 

NA= Noradrenalin; ADR= Adrenalin 

$ Die Daten sind als Mittelwerte ± Standarabweichung angegeben. 

# (##) = P < 0,05 (0,01) vs. Gruppe 1 

 

Die Patienten der HLM-Gruppe erhielten eine signifikant größere Menge an 

kristalloider Flüssigkeit während der EKZ als Patienten der Gruppen 2 und 3 (s. Tabelle 

12). Dieser Unterschied blieb während der gesamten Studiendauer signifikant in Bezug 

auf die totale Zufuhr an Kristalloiden, wohingegen die Gesamtmenge an infundierter 

kolloidaler Flüssigkeit in den Studiengruppen gleich war. Auch die Diurese war über 

die Studiendauer hinweg vergleichbar (s. Tabelle 12). Nur ein Patient aus der CORx-

Gruppe benötigte intraoperativ eine Transfusion von 2 Erythrozyten-Konzentraten.  
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Tabelle 12: Intraoperative Flüssigkeitsbilanz 

 Gruppe 1: HLM Gruppe 2: DS Gruppe 3: CORx 

Kristalloide 

(ml·kg-1) 

vor EKZ 11 ± 4 13 ±  3 11 ± 3 

EKZ 36 ± 8 19 ± 8 # 24 ± 11 # 

nach EKZ 4 ± 2 5 ± 4 5 ± 3 

Σ (ml·kg-1)  51 ± 11 37 ± 12 # 40 ± 13 # 

Kolloide 

(ml·kg-1) 

vor EKZ 4 ± 2 6 ± 3 3 ± 3 

EKZ 8 ± 3 7 ± 5 4 ± 5 

nach EKZ 2 ± 2 4 ± 3 5 ± 4 

Σ (ml·kg-1)  14 ± 4 15 ± 7 11 ± 7 

Urin 

(ml·kg-1) 

vor EKZ 2 ± 1 2 ± 2 2 ± 1 

EKZ 3 ± 2 4 ± 3 3 ± 2 

nach EKZ 4 ± 2 3 ± 2 2 ± 1 

Σ (ml·kg-1)  9 ± 4 8 ± 5 6 ± 4 

 

# = P < 0,05 vs. Gruppe 1 
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c.) Blutbild 

Nach Initiierung der EKZ und am Operations-Ende war in allen Untersuchungsgruppen 

ein signifikanter Abfall des Hb-Gehalts und des Hämatokrits zu beobachten. Aufgrund 

des größten Priming-Volumens bei der HLM-Gruppe und der damit verbundenen 

Hämodilution war der Abfall in der HLM-Gruppe am größten (s. Abbildungen 7 und 8). 

 

Abbildung 7: Intraoperativer Verlauf des Hämatokrits 
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Abbildung 8: Perioperativer Verlauf der Hämoglobin-Konzentration 
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TI = Narkoseeinleitung, TII= Schnitt, TIV= vor EKZ, TV= EKZ, TVI= nach EKZ, 

TVIII= OP-Ende, TIX= 6h postop, TX= 12h postop, TXI= 1d postop 

++ = P < 0,01 vs. T I; # = P < 0,05 vs. HLM 

 

Verglichen mit den präoperativen Werten waren ein signifikanter Abfall der 

Thrombozyten und ein ebenfalls signifikanter Anstieg der Leukozyten perioperativ zu 

sehen, wobei sich allerdings kein Unterschied zwischen den Gruppen 1, 2 und 3 

feststellen ließ (s. Abbildungen 9 und 10). Am 5. postoperativen Tag wurden in beiden 

Fällen wieder Ausgangswerte erreicht. 
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Abbildung 9: Perioperativer Verlauf der Thrombozyten-Konzentration 
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Abbildung 10: Perioperativer Verlauf der Leukozyten-Konzentration 
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d.) Zytokine 

Bei den untersuchten inflammatorischen und antiinflammatorischen Parametern gab es 

sehr unterschiedliche Ergebnisse. In keiner Gruppe war zu den gewählten Zeitpunkten 

ein Anstieg von TNFα zu beobachten. Nur bei je zwei Patienten aus jeder Gruppe 

konnten sehr niedrige Plasmaspiegel an IL-1 β und IFN-γ nachgewiesen werden. 6 

Stunden nach OP-Ende (T VI) waren signifikant erhöhte Werte an IL-6 ausschließlich 

bei SBS-Patienten zu verzeichnen. IL-10 war nur bei HLM-Patienten erhöht. Diese 

Werte waren direkt nach Ende der EKZ (T IV) und bei OP-Ende (T V) signifikant 

erhöht im Vergleich zu den SBS-Gruppen (s. Abbildungen 11 und 12). 
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Abbildung 11: Perioperativer Verlauf der IL-6-Konzentration 
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Abbildung 12: Perioperativer Verlauf der IL-10-Konzentration 
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e.) Hämolyse 

Während Haptoglobin als ein Marker der intravaskulären Hämolyse nur innerhalb der 

einzelnen Untersuchungsgruppen Auffälligkeiten aufwies, konnte man an Hand der 

Konzentration des „freien Hbs“  signifikante Unterschiede zwischen den drei 

Untersuchungsgruppen feststellen. Während HLM- und CORx-Patienten nach der EKZ 

signifikant erhöhte Spiegel an freiem Hb hatten (maximale Konzentration: HLM: 144,0 

± 28,1 mg/l bzw. CORx: 127,3 ± 66,3 mg/l), veränderten sich die Werte bei DS-

Patienten nur minimal (68,1 ± 33,9 mg/l) (s. Abbildungen 18 und 19). 
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Abbildung 18: Perioperativer Verlauf der Haptoglobin-Konzentration 
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Abbildung 19: Perioperativer Verlauf der Konzentration an „Freiem Hb“: 
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f.) Gerinnung 

Bei Betrachtung der Gerinnungsparameter und hier vor allem der D-Dimere als Marker 

der Gerinnungsaktivierung fällt auf, dass bei den SBS-Gruppen die Werte insbesondere 

intraoperativ (TII-TVIII) in beiden Fällen noch im Referenzbereich (< 500 µg/l), die 

Werte der konventionellen HLM dagegen schon im pathologischen Bereich liegen. 

Diese Unterschiede erreichten aber keine statistische Signifikanz (s. Abbildung 20).  

Der perioperative Verlauf der AT III-Fraktion ist in den drei Untersuchungsgruppen 

vergleichbar. Man erkennt intraoperativ ab Beginn der EKZ einen signifikanten Abfall 

in allen Gruppen. Bis zum 5. postoperativen Tag werden annähernd die präoperativen 

Ausgangswerte erreicht (s. Abbildung 21).  

Ein ähnlicher Verlauf ist beim Quick-Wert zu sehen. Nach signifikantem Abfall 

während der EKZ kommt es bis zum Ende des Beobachtungszeitraums zur 

Normalisierung des Quick-Wertes (s. Abbildung 23).  

Die aPTT hingegen steigt mit Beginn der EKZ in allen drei Gruppen signifikant an, 

bereits 6 Stunden postoperativ gab es aber keinen Unterschied mehr zu den Werten vor 

der HLM. Dies ist dadurch zu erklären, dass die Patienten aller drei Studiengruppen vor 

Beginn des kardiopulmonalen Bypasses mit Heparin therapeutisch antikoaguliert 

worden sind, dessen Wirkung nach Abgang von der HLM mittels Protamin 

antagonisiert worden ist (s. Abbildung 22).  

Die Thrombinzeit hat sich während des gesamten Studienzeitraums in keiner der 

Gruppen verändert (s. Abbildung 24). 

Auch die Fibrinogen-Konzentration war in allen drei Untersuchungsgruppen 

vergleichbar. Intraoperativ kam es in den drei Gruppen gleichermaßen zu einem 

signifikanten Konzentrationsabfall (s. Abbildung 25). 
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Abbildung 20: Perioperativer Verlauf der Konzentration an D-Dimeren 
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Abbildungen 21: Perioperativer Verlauf der AT III-Aktivität 
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Abbildung 22: Perioperativer Verlauf der aktivierten partiellen Thromboplastinzeit: 
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Abbildung 23: Perioperativer Verlauf der Thromboplastinzeit (Quick) 
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Abbildung 24: Perioperativer Verlauf der Thrombinzeit 
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Abbildung 25: Perioperativer Verlauf der Fibrinogenkonzentration 
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3. Postoperative intensivmedizinische Kenngrößen 

 
Die postoperativen Daten, die in Tabelle 13 dargestellt sind, unterscheiden sich 

zwischen den einzelnen Gruppen nicht signifikant voneinander. Man kann in der HLM-

Gruppe eine Tendenz zum erhöhten Transfusions-Bedarf an Eryzhrozyten-Konzentraten 

(EK) und an Fresh Frozen Plasma (FFP) erkennen. Dies erreicht aber keine statistische 

Signifikanz. Die Beatmungsdauer und die Dauer des Intensiv-Aufenthalts unterschieden 

sich kaum in den drei Untersuchungsgruppen.  

Ein Patient der DeltaStream-Gruppe verstarb am 5. postoperativen Tag in Folge 

ausgedehnter Dünndarm- und Colon-Infarkte. Ein Patient der CORx-Gruppe musste 

wegen Kammerflimmerns, das bei Verlegung auf die Intensiv-Station aufgetreten war, 

notfallmäßig re-thorakotomiert werden. Dieser Zwischenfall konnte am ehesten auf 

einen Vasospasmus der Arteria radialis zurückgeführt werden, die als sequentieller 

Bypass zum ersten und zweiten Ramus marginalis des Ramus circumflexus verwendet 

worden war. Dieser Bypass wurde in einer Re-Operation durch zwei einzelne 

Venenbypässe in kardioplegischem Arrest ersetzt. Nach einem verlängerten Aufenthalt 

auf der Intensiv-Station von insgesamt 13 Tagen wurde der Patient in klinisch guter 

Verfassung entlassen. Die postoperativen Daten dieser beiden Patienten wurden aus der 

Studie ausgeschlossen, da sie nach Zusammenschau aller Befunde Komplikationen 

präsentierten, die mit an Sicherheit grenzender Wahrscheinlichkeit nicht auf die Bypass-

Systeme zurückzuführen waren, so dass statistische Analysen der kleinen Patienten-

Kollektivs wesentlich verfälscht worden wären.  



62 
 

Tabelle 13: Postoperative intensivmedizinische Daten 

 

 Gruppe 1: HLM Gruppe 2: DS Gruppe 3: CORx 

Beatmungsdauer (Stunden)α 11 (5-360) 9 (3-28) 10 (4-120) 

OIM-Aufenthalt (Tage)α 2 (1-36) 1,5 (1-21) 1 (1-14) 

Drainageblutverlust (ml)α 677 ± 352 778 ± 584 823 ± 659 

EK 1 Patient: 11 EKs 

1 Patient: 6 EKs 

2 Patienten: 2 EKs 

11 Patienten: keine 

EKs  

1 Patient: 3 EKs 

2 Patienten: 2 EKs 

12 Patienten: keine 

EKs 

3 Patienten: 2 EKs 

12 Patienten: keine 

EKs 

4 (0-11) α 2,5 (0-3) α 1 (0-2) α 

FFP 1x 3 FFPs 

1x6 FFPs 

1x 2 FFPs 1x 3 FFPs 

3 (0-6) α 1 (0-2) α 1,5 (0-3) α 

 

α Die Daten sind als Median (Minimalwert-Maximalwert) angegeben. 

$ Die Daten sind als Mittelwert ± Standardabweichung angegeben. 
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IV. Diskussion  

In der vorliegenden Studie konnte für die Operation am schlagenden Herzen und unter 

Verwendung der SBS für den intraoperativen Zeitraum kein wesentlicher 

hämodynamischer Vorteil gegenüber mit konventioneller EKZ durchgeführten 

Operationen festgestellt werden. Die Patienten, die am schlagenden Herzen unter 

Einsatz eines SBS operiert wurden, benötigten höhere Dosen an Noradrenalin, um 

vorher festgelegte hämodynamische Mindestwerte zu erreichen. Außerdem bewirkte der 

Einsatz der SBS und der Verzicht auf den kardioplegischen Arrest keine verminderte 

Ausschüttung vom proinflammatorischen Zytokin IL-6 als Antwort auf die EKZ. 

Dagegen wurde das anti-inflammatorische Zytokin IL-10 bei der Referenzgruppe 

(konventionelle HLM, milde Hypothermie und kardioplegischer Arrest) vermehrt 

sezerniert.  

 

1. Inflammation 

Durch herzchirurgische Eingriffe unter Einsatz eines kardiopulmonalen Bypasses kann 

eine systemische Entzündungsreaktion induziert werden 35;48;98. Oberflächen-abhängige 

(Blutkontakt mit Fremdoberflächen und Luft), aber auch Oberflächen-unabhängige 

(Hypothermie, Ischämie und Reperfusion, Endotoxinämie, Operationstrauma) Faktoren 

werden für eine komplexe Entzündungsreaktion verantwortlich gemacht, bei der 

verschiedene zelluläre und humorale Komponenten des Immunsystems aktiviert werden 
182. Unterschiedlichste Versuche wurden unternommen, um diese Immunantwort zu 

verringern, sowohl durch pharmakologische Interventionen als auch durch Einsatz 

anderer chirurgischer oder apparativer Techniken 31;34. Ein Versuch, die durch die EKZ 

hervorgerufene Immunantwort zu verringern, ist die Verwendung von SBS mit 

reduzierter Fremdoberfläche und reduziertem Blut-Luft-Kontakt 59;66. Allerdings 

bestätigen die Ergebnisse der vorliegenden Studie nicht diesen theoretischen Nutzen der 

SBS, da keine Reduktion der Ausschüttung proinflammatorischer Zytokine zu 

verzeichnen war. Es wurde vielmehr in allen drei Studiengruppen ein vergleichbarer 

Anstieg der Leukozyten und ein Abfall der Thrombozyten beobachtet, eine 

Konstellation, die typischerweise als inflammatorische Reaktion auf die extrakorporale 

Zirkulation gewertet werden kann. Darüber hinaus war die perioperative IL-6 

Ausschüttung in beiden SBS-Gruppen nicht verringert, sondern zeigte vielmehr einen 

signifikanten Anstieg verglichen mit den Ausgangswerten (s. Abbildung 11). Unsere 

Beobachtung deckt sich dabei nicht mit den Ergebnissen von Fromes et al., der im 
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Vergleich zur konventionellen HLM bei Patienten, die an einer SBS operiert wurden, 

einen signifikant erniedrigten IL-6 Spiegel feststellen konnte. In dieser Studie wurde 

allerdings ein anderes SBS-System verwendet (Minimale extrakorporale Zirkulation 

(MECC®, Jostra, Germany)). Darüber hinaus wurde sowohl in der HLM- als auch der 

SBS-Gruppe eine Blutkardioplegie durchgeführt. Außerdem verwendeten Fromes et al. 

Heparin-beschichtete Schlauchsysteme und applizierten weder Methylprednisolon noch 

Aprotinin. Bei unseren Patienten hingegen führte weder eine Reduktion der 

Fremdoberfläche bzw. des extrakorporalen Priming-Volumens noch die Normothermie 

und Vermeidung eines kardioplegischen Arrests in den SBS-Gruppen zu einer 

Verringerung der IL-6-Sekretion. Möglicherweise verursacht die EKZ an sich die 

inflammatorische Reaktion, unabhängig von der Größe des Priming-Volumens und/oder 

der Fremdoberfläche. Alternativ könnte die inflammatorische Reaktion primär auf das 

chirurgische Trauma zurückzuführen zu sein 85;139;180 ungeachtet der unterschiedlichen 

Bypass-Typen, der Temperatur oder des kardioplegischen Arrests. Obwohl in einigen 

Studien eine Verminderung der Inflammation bei Off-Pump-Operationen im Vergleich 

zu On-Pump-Eingriffen beobachtet worden sind 4;36;44;122, wird unsere Vermutung durch 

einige andere Studien gestützt, in denen die IL-6  Freisetzung vergleichbar war, 

unabhängig davon, ob sich die Patienten einem Off- oder On-Pump-Eingriff unterzogen 
44;57 oder ob dieser in Normo- bzw. Hypothermie durchgeführt  wurde 84. Auch könnte 

der routinemäßige Einsatz von Methylprednisolon 47;165;167 und Aprotinin 78;141 in 

unserer Studie zu einer verminderten proinflammatorischen Immunantwort geführt und 

damit mögliche Unterschiede zwischen den verschiedenen  Bypass-Typen 

abgeschwächt haben.   

 

Interessanterweise induzierte nur der Einsatz der konventionellen HLM und der 

kardioplegische Arrest zusammen mit einer moderaten Hypothermie einen signifikanten 

Anstieg des anti-inflammatorischen Zytokins IL-10. Der zu Grunde liegende 

Mechanismus für diesen Anstieg ergibt sich nicht auf den ersten Blick. Auch Diegeler 

et al. konnten im Vergleich zu einer OPCAB-Gruppe einen signifikant höheren IL-10 

Spiegel in einem Patientenkollektiv nachweisen, das unter kardioplegischem Arrest 

(allerdings mit Normothermie) mit einer konventionellen HLM operiert worden war 44. 

In einer anderen Studie war die perioperative IL-10 Freisetzung in Hypothermie 

prinzipiell erniedrigt, stieg nach längerer Dauer der Hypothermie aber an 74. Daher kann 

nicht endgültig gesagt werden, ob der IL-10-Anstieg durch die Hypothermie, den 

kardioplegischen Herzstillstand oder den Gebrauch der konventionellen HLM bedingt 
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war. Auch wenn die für den Anstieg des IL-10 ursächlichen Mechanismen nicht geklärt 

werden können, liegt nahe, dass der Anstieg des IL-10 in der HLM-Gruppe die 

systemische Hämodynamik beeinflusst haben könnte. So war die systemische 

Vasodilatation in der Kontroll-Gruppe am OP-Ende weniger ausgeprägt als in den SBS-

Gruppen: Um adäquate hämodynamische Zielwerte zu erreichen, benötigten Patienten 

der SBS-Gruppen einen höheren Bedarf an Noradrenalin. Diese Beobachtung lässt sich 

möglicherweise auf die unterschiedliche Freisetzung an Zytokinen im perioperativen 

Verlauf zurückführen 167. IL-10 spielt nämlich eine protektive Rolle bei der Suppression 

der Freisetzung von pro-inflammatorischen Zytokine 181. So konnten Störungen im 

Verhältnis von pro- zu anti-inflammtorischen Zytokinen mit dem Überwiegen der pro-

inflammatorischen Komponente mit einem Myokardschaden nach kardiopulmonalem 

Bypass in Verbindung gebracht werden 63;177;189.  

Zytokine induzieren die Expression vasoaktiver Substanzen, wie Prostanoide, 

Leukotriene, NO, Bradykinin oder Thromboxan 142, die vasopressorische und 

vasodilatatorische Eigenschaften besitzen. Dabei führt der Anstieg von pro-

inflammatorischen Zytokinen (TNF-α, IL-1β, IL-6) zu einer Vasodilatation 65;130. In 

unserer Studie war IL-6 bei den SBS im Vergleich zur HLM erhöht, was den erhöhten 

Vasopressoren-Bedarf in Form von Noradrenalin erklären könnte. Demgegenüber hat 

man in einer tierexperimentellen Studie zeigen können, dass IL-10 als anti-

inflammatorisches Zytokin einen endotoxin-induzierten Abfall des Gefäßtonus 

verhindern kann 166. Dieses Ergebnis wird in unserer Studie bestätigt, derart, dass IL-10 

in der HLM-Gruppe im Vergleich zu den SBS-Gruppen direkt nach der EKZ und gegen 

OP-Ende statistisch signifikant erhöht, der Bedarf an Noradrenalin zur 

hämodynamischen Stabilisierung aber signifikant niedriger war. 
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2. Gerinnungsstörungen 

Regelhaft kommt es bei herzchirurgischen Eingriffen mit Einsatz einer EKZ zu 

Störungen des Gerinnungssystems. Ca. 20% der Patienten bluten signifikant nach 

herzchirurgischen Eingriffen, in 5% der Fälle muss eine operative Revision erfolgen 
133;140. Dies ist zum einen iatrogen-medikamentös bedingt (z.B. durch eine 

Vormedikation mit Thrombozytenaggregationshemmern) 1;26;172 zum anderen kommt es 

im Falle einer Herzoperation mit EKZ durch eine komplexe Interaktion zwischen 

Koagulation, Inflammation und Endothelfunktionen zu Störungen der Hämostase. 

Proinflammatorische Zytokine führen über eine Endothelaktivierung und die Expression 

von „tissue factor“, Leukozytenadhäsionsmolekülen und „platelet activating factor“ 

(PAF) zu einer Gerinnungsaktivierung 33;52. Thrombozytendysfunktion und verringerte 

Thrombozytenkonzentrationen durch Scherstress, Hypothermie 14;175, Fremdoberflächen 
28;179 und den Einfluss von Medikamenten 96;134 führen ebenfalls zu 

Gerinnungsstörungen. Inwieweit verschiedene Pumpensysteme die Hämostase 

unterschiedlich beeinflussen, ist nach der aktuellen Datenlage bisher nicht eindeutig 

geklärt, da es sowohl Studien gibt, die einen Vorteil der Zentrifugal- gegenüber der 

Rollerpumpe sehen 132;135, wohingegen andere Studien dieser Aussage klar 

widersprechen 5;7. Auch in unserer Studie konnte kein eindeutiger Vorteil der 

Zentrifugal- bzw. Mikrodiagonalpumpe gegenüber der Rollerpumpe gezeigt werden. 

Die Konzentration der D-Dimere war in der HLM-Gruppe gegenüber den SBS-Gruppen 

erhöht, gegenüber der DS-Gruppe erreichte dies sogar statistische Signifikanz. Dies 

lässt gegenüber den SBS-Gruppen eine erhöhte Gerinnungsaktivierung durch die 

Rollerpumpe vermuten. Allerdings wurde die HLM-Gruppe auch in Hypothermie und 

mit Kardioplegie operiert, was die Blutgerinnung unabhängig vom Pumpentyp ebenfalls 

beeinflußt haben dürfte 137;158. Die (nicht-signifikant) erhöhte Konzentration an D-

Dimeren in der CORx-Gruppe gegenüber der DS-Gruppe hingegen legt allerdings auf 

Grund der identischen Untersuchungsbedingungen in diesen Gruppen die Vermutung 

nahe, dass das unterschiedliche Pumpendesign (Mikrodiagonalpumpe vs. 

Zentrifugalpumpe) ursächlich dafür verantwortlich ist. Dieses Ergebnis kann nach 

aktueller Studienlage aber weder bestätigt noch widerlegt werden. Da wir aber nur bei 

diesem einen Gerinnungsparameter einen Unterschied beobachten konnten, der sich 

(u.a. auch auf Grund des kleinen Patientenkollektivs) klinisch nicht bemerkbar gemacht 

hat (kein Unterschied im Drainagenblutverlust, kein signifikanter Unterschied im 

Transfusionsbedarf; s. Tabelle 13), sollte man dies nicht als wesentlichen Vorteil 
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gegenüber der konventionellen HLM betrachten. Somit scheinen trotz unseres 

Studienergebnisses nicht der Pumpentyp, sondern die extrakorporale Zirkulation per se 
28;191 sowie externe Faktoren wie Hypothermie 176 und auch Heparin 96 ursächlich für 

Blutungskomplikationen verantwortlich zu sein, vornehmlich durch 

Thrombozytenaktivierung, Thrombozytendysfunktion und intraoperativem 

Thrombozytenabfall, der in allen drei Untersuchungsgruppen identisch gewesen ist. 

 

3. Hämolyse 

Bei Operationen unter Einsatz einer EKZ kann es zu einer bedeutenden Hämolyse 

kommen. Hierbei spielen sowohl mechanische als auch humorale Ursachen eine Rolle. 

Dabei hat das Pumpensystem abhängig vom Pumpentyp einen erheblichen Anteil an der 

Erythrozyten-Schädigung. In experimentellen Studien konnte nachgewiesen werden, 

dass Rollerpumpen die korpuskulären Bestandteile des Bluts erheblich mehr 

traumatisieren als Zentrifugalpumpen 103;138. Dies konnte bisher in klinischen Studien 

nicht eindeutig bestätigt werden, da widersprüchliche Ergebnisse vorliegen 89;118. 

Andere Studien haben zeigen können, dass die Hämolyse hauptsächlich durch den 

Kardiotomie-Sauger und weniger durch das Pumpensystem verursacht wird. Ursächlich 

hierfür vermutet man Scherstress und Blut-Luft-Kontakt 9;87. Auch in unserer Studie 

waren die Ergebnisse widersprüchlich. Die Haptoglobin-Konzentration sank in allen 

drei Untersuchungsgruppen signifikant ab, die Konzentration an „freiem Hb“ stieg aber 

nur in der HLM- und der CorX-Gruppe signifikant an. Der Unterschied in der 

Hämolyserate zwischen der HLM und den SBS liegt zum einen an der Verwendung des 

Kardiotomie-Saugers in der HLM-Gruppe 9;87. Zum anderen konnte eine Studie zeigen, 

dass der Einsatz des Cell-Savers in den SBS-Gruppen das während der EKZ-Zeit 

entstehende „freie Hb“ effektiv eliminiert und somit nach Retransfusion des 

aufbereiteten Bluts keine erhöhten Konzentrationen mehr vorhanden sind 164. Da aber 

sowohl in der DS- als auch in der CORx-Gruppe ein Cell-Saver verwendet wurde, kann 

dies nicht die Erklärung für die unterschiedliche Hämolyserate zwischen den 

verschiedenen Gruppen sein. Göbel et al. konnten aber zeigen, dass die Hämolyse des 

DS-Pumpensystems sehr niedrig ist 66. Somit liegt der Schluss nahe, dass offensichtlich 

das Pumpendesign (Mikrodiagonalpumpe vs. Zentrifugalpumpe) Einfluss auf die 

Hämolyse hat. Eine weitere Ursache könnte auch die Verwendung unterschiedlicher 

Oxygenatoren gewesen sein (Jostra/Medos: Medos Hilite 7000, Deutschland; 

Cardiovention: CORx IOS, USA) 13;94.  
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4. Hämodilution 

Bei operativen Eingriffen mit Herz-Lungen-Maschine kommt es primär durch das 

Primimg-Volumen der EKZ zwangsläufig zur Hämodilution und damit zu einem Abfall 

des Hb-Gehalts und des Hämatokrits. Durch das geringere Primimg-Volumen war die 

Hämodilution bei den Mini-EKZ nicht so ausgeprägt wie bei der konventionellen HLM. 

Hierauf ist auch wahrscheinlich zurückzuführen, dass der Transfusionsbedarf in Gruppe 

1 am größten war. Dieses Ergebnis wies allerdings keine statistische Signifikanz auf. 

Andere Ursachen für den erhöhten Transfusionsbedarf sind unwahrscheinlich, da sich 

zum einen die Gerinnungsfunktion laborchemisch in allen drei Gruppen nicht 

wesentlich voneinander unterschied, zum anderen der Gesamt-Drainageblutverlust in 

der HLM-Gruppe tendenziell am geringsten gewesen ist. Während der gesamten 

Studiendauer war der Hämatokrit-Wert in allen drei Gruppen durchweg >25% und der 

Hämoglobin-Gehalt >8 g/dl. Letzterer musste intraoperativ nur bei einem Patienten der 

CorX-Gruppe durch die Transfusion von 2 EKs auf dieses Niveau angehoben werden.  

 

5. Limitationen 

Unsere Studie weist eine Reihe wichtiger Limitationen auf. Sie kann damit nur als Pilot-

Studie betrachtet werden, mit Hilfe derer weitere Hypothese generiert werden und eine 

Fallzahlabschätzung für Folgestudien durchgeführt werden können. Die HLM-Gruppe 

unterschied sich von den SBS-Gruppen nicht nur in Bezug auf den kardiopulmonalen 

Bypass, sondern auch in Bezug auf das Temperaturmanagement und den Umgang mit 

dem aus dem OP-Situs abgesaugten Blut. 

Entsprechend der klinischen Routine in unserer Abteilung erhielten alle Patienten 

Kortikosteroide und Aprotinin. Es ist bekannt, dass beide Medikamente eine 

Modulation der Entzündungsantwort durch Hemmung der Produktion der pro-

inflammatorischen Zytokine und Steigerung der Freisetzung von IL-10 verursachen 
78;165;167. Die Tatsache, dass weder TNF-α, noch IL-1β oder IFN-γ bei unseren Patienten 

nachgewiesen werden konnten, stimmt mit den Ergebnissen aus anderen Studien 

überein, die zeigen konnten, dass die Applikation von Kortikosteroiden und Aprotinin 

zu niedrigen bzw. nicht detektierbaren Serum-Spiegeln dieser Zytokine führt 44;47;84;167. 

Darüber hinaus wurde im Gegensatz zur HLM-Gruppe bei den SBS-Gruppen ein Cell-

Saver eingesetzt, um bei fehlendem Kardiotomiesauger eine Retransfusion von 

Wundblut zu ermöglichen und damit Fremdblut zu sparen. Dieses im Cell-Saver 
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aufbereitete Blut wird einer Fremdoberfläche und Luft ausgesetzt, was theoretisch zu 

einer weiteren Immunaktivierung führen kann. Es gibt allerdings Hinweise, dass der 

Einsatz eines Cell-Savers die Entzündungsantwort abzuschwächen vermag, zumindest 

aber keine zusätzliche inflammatorische Aktivierung verursacht verglichen mit dem 

Blut, dass bei der konventionellen HLM mit dem Kardiotomie-Sauger gesammelt und 

dem extrakorporalen Kreislauf wieder zugeführt wird 171. 

Daneben erhielten die Patienten der HLM-Gruppe intraoperativ signifikant mehr 

kristalloide Flüssigkeit als die SBS-Patienten, was zum einen auf das größere Priming-

Volumen, zum anderen aber auch auf die applizierte Kardioplegie zurückzuführen ist. 

Dies führte während der EKZ nicht nur zu einem verringerten Hämatokrit, sondern 

vermutlich auch zu einer Verdünnung der Zytokine und der Zahlen an Leukozyten und 

Thrombozyten. Allerdings war der Grad der Hämodilution am Ende der Operation in 

allen Gruppen vergleichbar, so dass aller Wahrscheinlichkeit nach die unterschiedliche 

Flüssigkeitsbilanz nicht der Grund für die unterschiedlichen Zytokin-Spiegel sein kann. 

Zudem beschränkte sich in unserer Studie die Betrachtung der Hämodynamik 

ausschließlich auf die intraoperative Phase, so dass mögliche postoperative 

hämodynamische Veränderungen nicht erfasst worden sind. 

Desweiteren haben wir ein zu kleines Patientenkollektiv betrachtet, um statistisch valide 

Aussagen über relevante Outcome-Variablen wie Letalität, Morbidität und Länge des 

Aufenthalts auf der Intensivstation treffen zu können. 

 

6. Schlussfolgerung 

Die Ergebnisse unserer Studie lassen den Schluss zu, dass der Einsatz einer 

miniaturisierten EKZ trotz Verringerung der Fremdoberfläche und des extrakorporalen 

Volumens keine Verbesserung der postoperativen globalen Hämodynamik bewirken 

konnte. Auch die inflammatorischen Antwort wurde durch die miniaturisierte EKZ 

nicht reduziert. Somit ist eher nicht zu erwarten, dass diese Systeme bei 

herzchirurgischen Operationen die konventionellen Herz-Lungen-Maschinen generell 

ersetzen werden können. Allerdings könnte bei Bypass-Operationen am schlagenden 

Herzen die Unterstützung durch eine Mini-HLM besonders bei Patienten mit deutlich 

reduzierter Ventrikelfunktion eine Möglichkeit bieten, das Herz intraoperativ 

vollständig zu entlasten und z.B. in den Phasen einer für die Anastomosierung distaler 

Koronarien erforderlichen Herzluxation die intraoperative Hämodynamik zu 

stabilisieren 55;56;146. Weitere Verwendungsmöglichkeiten sind aufgrund der 
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Miniaturisierung der Systeme ebenfalls denkbar und teilweise bereits umgesetzt 

worden, z.B. zur extrakorporalen Membranoxygenation beim kardiogenen Schock oder 

dem akuten Lungenversagen 2 oder zur selektiven Organperfusion wie z.B. bei 

Operationen an der Aorta descendens 
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V. Zusammenfassung 

Der Einsatz der extrakorporalen Zirkulation bei herzchirurgischen Operationen kann mit 

zahlreichen klinisch relevanten Nebenwirkungen wie die systemische Aktivierung des 

Immunsystems, Störungen des Gerinnungssystems, Hämolyse, Hämodilution und 

Beeinträchtigung der globalen Hämodynamik vergesellschaftet sein. Diese sind v.a. auf 

eine generalisierte Entzündungsreaktion durch den Kontakt mit extrakorporalen 

Fremdoberflächen, die intraoperative Hypothermie, die mechanische Beeinträchtigung 

des Blutes durch die verwendeten Blutpumpen und Verdünnungseffekte durch das 

extrakorporale Volumen der verwendeten EKZ-Systeme zurückzuführen. Daraus ergab 

sich die Hypothese, dass eine Miniaturisierung der EKZ durch die Reduktion der 

Fremdoberfläche und/oder des extrakorporalen Volumens wie auch der Verzicht auf 

eine Hypothermie diese Nebenwirkungen abschwächen bzw. vermeiden könnte.  

 

In dieser prospektiven, randomisierten Studie haben wir daher untersucht, ob der 

Einsatz miniaturisierter Bypass-Systeme in Normothermie bei herzchirurgischen 

Patienten, die sich einer operativen Myokardrevaskularisation unter Einsatz der 

extrakorporalen Zirkulation unterziehen, einen klinischen Vorteil gegenüber dem 

konventionellen Verfahren in milder Hypothermie bieten können. Ziel der Studie war es 

zu untersuchen, inwieweit drei unterschiedliche Systeme der extrakorporalen 

Zirkulation hämodynamische und immunologische Parameter sowie die Hämolyse und 

die Blutgerinnung kardiochirurgischer Patienten bei aortokoronaren Bypassoperationen 

beeinflussen.  

 

Es wurden jeweils 15 Patienten drei unterschiedlichen Untersuchungsgruppen 

zugeordnet. In der Kontrollgruppe wurden 15 Patienten mit der konventionellen HLM 

im kardioplegischen Arrest in milder Hypothermie operiert, zwei Gruppen mit jeweils 

15 Patienten unterzogen sich der Operation am schlagenden Herzen in Normothermie 

mit Unterstützung eines miniaturisierten Bypass-Systems. Perioperativ wurden 

detaillierte hämodynamische Messungen mittels transpulmonaler Thermodilution 

durchgeführt sowie Inflammations-, Hämolyse- und Gerinnungsparameter bestimmt 

und statistisch ausgewertet.  

 

Die Ergebnisse zeigen, dass weder die alleinige Reduzierung des extrakorporalen 

Volumens bei der DeltaStream®-Pumpe, noch die zusätzliche Verkleinerung der 
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Fremdoberfläche bei der CorX®-Pumpe einen signifikanten Effekt auf die globale 

Hämodynamik nach Beendigung der EKZ haben.  

 

Zudem konnte durch den Einsatz der miniaturisierten Bypass-Systeme keine 

Verringerung der proinflammatorischen Immunantwort nach der EKZ erreicht werden. 

Die Konzentration an IL-6 als zentralem proinflammtorischem Zytokin war bei diesen 

Systemen gegenüber der konventionellen HLM sogar signifikant erhöht. Vielmehr 

bewirkte die herkömmliche Methode (konventionelle HLM und kardioplegischer Arrest 

unter Hypothermie) eine erhöhte Freisetzung des anti-inflammatorischen Zytokins IL-

10, was möglicherweise den in dieser Gruppe erniedrigten Bedarf an vasoaktiven 

Substanzen nach der EKZ erklären könnte.  

 

Auch in Bezug auf die Hämolyse gab es in den drei Untersuchungsgruppen 

Unterschiede. Während der Verlauf der Haptoglobin-Konzentration in allen drei 

Gruppen vergleichbar war, kam es in der HLM-Gruppe intraoperativ zu einem 

deutlichen Anstieg des freien Hämoglobins, der aber nur gegenüber der DeltaStream-

Gruppe signifikant gewesen ist. 

  

Einen Unterschied in der Gerinnungsaktivierung konnte nur bei einem der gemessenen 

Parameter, der Konzentration an D-Dimeren, gesehen werden. Diese waren in der 

HLM-Gruppe gegenüber den Mini-HLMs erhöht, gegenüber der DeltaStream-Pumpe 

erreichte dieser Wert sogar statistische Signifikanz. Bei allen anderen 

Gerinnungsparametern konnten keine Unterschiede festgestellt werden. Klinisch machte 

sich dieses Ergebnis ebenfalls nicht bemerkbar, da der Drainageblutverlust und der 

perioperative Transfusionsbedarf in allen drei Untersuchungsgruppen vergleichbar 

gewesen sind. 

 

Zusammenfassend läßt sich festhalten, dass in unserer Pilot-Untersuchung 

miniaturisierte Bypass-Systeme trotz Verringerung der Fremdoberfläche und des 

extrakorporalen Volumens keine Verbesserung der globalen Hämodynamik bewirken 

konnten. Auch konnte keine Reduktion der inflammatorischen Antwort durch die 

miniaturisierten EKZ erreicht werden. Daher ist eher nicht zu erwarten, dass diese 

Systeme bei herzchirurgischen Operationen die konventionellen Herz-Lungen-

Maschinen generell ersetzen werden können. 
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Vor einer abschließenden Bewertung sollten allerdings noch Folgeuntersuchungen 

durchgeführt werden: Es bleibt zu prüfen, ob die in der vorliegenden Studie 

nachgewiesenen Unterschiede der inflammatorischen Antwort auf die verschiedenen 

Bypass-Systeme u.U. Auswirkungen auf klinisch harte Outcome-Parameter wie die 

postoperative Morbidität und Mortalität der betroffenen Patienten zeitigen können.  

 

Bis dahin wird sich das Einsatzgebiet für die miniaturisierten Bypass-Systeme 

wahrscheinlich auf wenige ausgewählte Indikationen beschränken, z.B. zur 

intraoperativen Entlastung des Herzens bei Operationen am schlagenden Herzen 55;56;146, 

zur extrakorporalen Membranoxygenation beim kardiogenen Schock oder dem akuten 

Lungenversagen 2 oder zur selektiven Organperfusion wie z.B. bei Operationen an der 

Aorta descendens. 
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VIII. Abkürzungsverzeichnis 

 

ACT:  activated clotting time 

ACVB: Aorto-Coronarer-Venen-Bypass 

ALI:  acute lung injury 

ANV:  akutes Nierenversagen 

aPTT:  aktivierte partielle Thromboplastinzeit 

ARDS: acute respiratory distress syndrome 

AT III:  Antithrombin III 

CD:  cluster of differentiation 

CK:  Creatin-Kinase 

CK-MB: Creatin-Kinase; kardiales Isoenzym 

ECMO: extracorporal membrane oxygenation 

EF:  Ejektionsfraktion 

EK:  Erythrozytenkonzentrat 

EKG:  Elektrokardiogramm 

EKZ:  Extrakorporale Zirkulation 

ELWI:  Extravasaler Lungenwasserindex 

EVLW: Extravasales Lungenwasser 

FFP:  fresh frozen plasma 

GEDI:  globaler enddiastolischer Volumenindex 

GEDV: globales enddiastolisches Volumen 

GPIIb/IIIa: Glykoprotein IIb/IIIa 

Hb:  Hämoglobin 

HES:  Hydroxyethylstärke 

HF:  Herzfrequenz 

HI:  Herzindex 

Hk:  Hämatokrit 

HLM:  Herz-Lungen-Maschine 

HZV:  Herz-Zeit-Volumen 

IABP:  intraaortale Ballongegenpulsation 

IFN:  Interferon 

IL:  Interleukin 

ITBI:  intrathorakaler Blutvolumenindex 

ITBV:  intrathorakales Blutvolumen 
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ITTV:  intrathorakales Thermovolumen 

KOF:  Körperoberfläche 

LDH:  Laktatdehydrogenase 

LVEF:  linksventrikuläre Ejektionsfraktion 

MAD:  mittlerer arterieller Druck 

MODS: multiple organ dysfunction syndrome 

MOV:  Multiorganversagen 

NO:  Stickstoffmonoxid 

OPCAB: off-pump coronary artery bypass 

PAF:  platelet activating factor 

PTCA:  Perkutane Transluminale Coronare Angioplastie 

SBS:  Simplified Bypass Systems  

SIRS:  Systemic inflammatory response syndrome 

SV:  Schlagvolumen 

SVI:  Schlagvolumenindex 

SVR:  systemic vascular resistance 

SVR:  systemic vascular resistance 

SVRI:  systemic vascular resistance index 

SVRI:  systemic vascular resistance index 

SzvO2:  zentralvenöse Sauerstoffsättigung 

TK:  Thrombozytenkonzentrat 

TNF:  Tumor-Nekrose-Faktor 

TPZ:   Thromboplastin-Zeit 

TZ:  Thrombinzeit 

ZVD:  zentraler Venendruck 
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