Aus dem
Institut für Hormon- und Fortpflanzungsforschung (IHF)
an der Universität Hamburg

Direktor:
Prof. Dr. rer. nat. Richard Ivell

Aktuelle Adresse:
School of Molecular and Biomedical Sciences
The University of Adelaide, AUSTRALIA 5005

Ratten Insulin-like factor 3 (Insl3) Gen:
Charakterisierung und Regulation durch den
Transkriptionsfaktor
Steroidogenic Faktor 1 (SF-1)

Dissertation
zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät der Universität Hamburg

vorgelegt von

Helen Sadeghian
aus Abhar/Iran

Hamburg, 2007
Angenommen von der Medizinischen Fakultät
der Universität Hamburg am:

Veröffentlicht mit Genehmigung der Medizinischen
Fakultät der Universität Hamburg

Prüfungsausschuss, der/ die Vorsitzende:

Prüfungsausschuss: 2. Gutachter/in

Prüfungsausschuss: 3. Gutachter/in
Meiner Tochter „Celine Rose“ gewidmet
Inhaltsverzeichnis...I-II
Ziel der Arbeit..III

1 Einleitung ...1
 1.1 Männliche Subfertilität - Ein Problem des 20. Jahrhunderts?..............................1
 1.2 Die Morphologie der Leydigzelle ...5
 1.3 Die Rolle der Leydigzelle bei der hormonellen Steuerung6
 1.3.1 LH als gonadotroper Stimulus der Testosteron-Synthese7
 1.3.2 Herkunft des Cholesterols für die Steroidsynthese8
 1.3.3 Die Rolle der Transkriptionsfaktor SF-1 ..8
 1.4 Der Insulin-ähnliche Faktor 3 (Insl3) ..9

2 Material und Methoden ...13
 2.1 Bakterienstamm ..13
 2.2 Verwendete Primer ...13
 2.3 Verwendete Vektoren ...14
 2.4 Isolierung von Gesamt-RNA ...15
 2.5 cDNA-Synthese ...16
 2.6 Die Polymerase-Kettenreaktion (PCR) ..17
 2.6.1 PCR mit cDNA ...18
 2.6.2 PCR mit genomischer DNA ...19
 2.6.2.1 PCR mit genomischer DNA der Ratte ..19
 2.6.2.2 PCR mit genomischer DNA der Maus ..20
 2.6.3 Herstellung von Rattenpromotor-Deletionskonstrukten durch PCR20
 2.6.4 Colony-PCR ..21
 2.7 DNA-Auftrennung mittels Agarose-Gelelektrophorese21
 2.8 Reinigung von DNA-Fragmenten aus dem Gel ..22
 2.9 Restriktionsverdau von DNA ...22
 2.10 Ligation von DNA ..23
 2.11 Herstellung von kompetenten Bakterien ..24
 2.12 Transformation und Ausplattieren der Bakterien ...25
 2.13 Plasmid-Präparationen ...26
 2.13.1 Plasmid-Minipräparation ..27
 2.13.2 Endotoxin-freie Plasmid-Maxipräparation ...28
 2.14 Konzentrationsbestimmung von Nukleinsäuren ...29
 2.15 DNA-Sequenzierung ..29
 2.16 Zellkultur ...32
 2.16.1 Kultur ..32
 2.16.2 Lagerung bei -80°C ..32
 2.16.3 Zelllinien ...33
 2.17 Bestimmung der Progesteron-Konzentration mittels ELISA33
 2.18 Transfektion ..38
 2.18.1 Transfektion mittels Liposomen ...38
 2.19 „Reporter gene assays“ ...39
 2.19.1 Luciferase-Messung ..39
 2.19.2 β-Galactosidase-Messung ..40
 2.20 „Electrophoretic mobility shift assay“ (EMSA) ..40
 2.20.1 Herstellung von Kernproteinen aus Zellen ..42
 2.20.2 In vitro-Translation des klonierten Transkriptions- Faktors SF-143
 2.20.3 Herstellung von doppelsträngigen Oligonukleotiden44
3 Ergebnisse .. 51
 3.1 Expression des INSL3-Proteins im Hoden der Ratte .. 51
 3.1.1 Insl3-Analyse mittels RT-PCR .. 51
 3.1.2 INSL3-Protein-Analyse mittels Immunhistochemie 53
 3.2 Insl3-Gen-Promotor der Ratte .. 55
 3.2.1 Klonierung und Sequenzierung des Insl3-Genlokus 56
 3.2.2 Herstellung von Deletionskonstrukten vom Ratten-Insl3-Promotor durch PCR ... 57
 3.3 Bestimmung der Progesteron-Konzentration mittels ELISA 59
 3.4 Funktionalität des Ratten Promotors .. 60
 3.4.1 Aktivierungsfähigkeit der Insl3-Gen-Promoterkonstrukte in transienten Transfektionen .. 60
 3.4.2 „electrophoretic mobility shift assay“ (EMSA) .. 63
 3.4.2.1 Kompetitionsexperiment mit Bindungssequenzen für den Transkriptionsfaktor SF-1 ... 64
 3.4.2.2 Kompetitionsexperiment zur Überprüfung möglicher SF-1-Bindungsstellen ... 65
 3.4.2.3 Immunologische Charakterisierung der Protein-DNA-Komplexe 66
 3.5 Stimulation der MA-10 Zellen mit Dexamethason .. 67

4 Diskussion .. 69-74

5 Zusammenfassung ... 75

6 Anhang .. 76
 6.1 Abkürzungen .. 76
 6.2 Glossar .. 78
 6.3 Literaturverzeichnis ... 80
 6.4 Danksagung ... 86
 6.5 Lebenslauf .. 87
 6.6 Erklärung .. 88
Ziel der Arbeit

1 Einleitung

1.1 Männliche Subfertilität - Ein Problem des 20. Jahrhunderts?

Für den Menschen war seit jeher, die Fähigkeit zur Fortpflanzung nicht nur eine biologische Notwendigkeit, sondern auch ein existentielles Bedürfnis.

sollte man diese auch im Kontext der historischen Veränderung sehen, da dies möglicherweise externe Einflüsse als Faktoren aufzeigt.

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>% Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathisch ohne Phänotyp</td>
<td>48.8</td>
</tr>
<tr>
<td>Varicocele</td>
<td>12.6</td>
</tr>
<tr>
<td>Idiopath. Oligozoospermie</td>
<td>11.2</td>
</tr>
<tr>
<td>Infektion akzessorischer Drüsen</td>
<td>6.9</td>
</tr>
<tr>
<td>Idiopath. Teratozoospermie</td>
<td>5.9</td>
</tr>
<tr>
<td>Idiopath. Asthenozoospermie</td>
<td>3.9</td>
</tr>
<tr>
<td>Abnormes Seminalplasma</td>
<td>3.5</td>
</tr>
<tr>
<td>Immunologische Faktoren</td>
<td>3.0</td>
</tr>
<tr>
<td>Kongenitale Abnormalitäten</td>
<td>1.7</td>
</tr>
<tr>
<td>Systemische Ursachen</td>
<td>1.4</td>
</tr>
<tr>
<td>Sexuell inadequat</td>
<td>1.3</td>
</tr>
<tr>
<td>Obstruktive Azoospermie</td>
<td>0.9</td>
</tr>
<tr>
<td>Idiopathische Nekrospermie</td>
<td>0.8</td>
</tr>
<tr>
<td>ejaculatorisch inadequat</td>
<td>0.7</td>
</tr>
<tr>
<td>Hyperprolactinaemie</td>
<td>0.6</td>
</tr>
<tr>
<td>iatrogene Faktoren</td>
<td>0.6</td>
</tr>
<tr>
<td>abnormer Karyotyp</td>
<td>0.5</td>
</tr>
<tr>
<td>partielle Obstruktion</td>
<td>0.1</td>
</tr>
<tr>
<td>retrograde Ejakulation</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Vergleicht man den Mann mit den männlichen Vertretern der verschiedenen Tierarten, so erscheint dieser nicht voll funktionsfähig. Dies fängt schon bei den Keimzellen an. Die Anzahl der Spermatiden im Verhältnis zur Anzahl der Sertolizellen bezeichnet man als „spermatogenetische Effizienz“. Bei Männern beträgt diese im Vergleich zu Affen oder Ratten etwa ein Viertel. Betrachten wir die Spermien im Ejakulat, sind nach den relativ strengen Kriterien der Welt-Gesundheits-Organisation (WHO) etwa 4-7% der Spermien morphologisch und kinetisch intakt. Bei Laborratten liegt dieser Wert bei 70-80%. Benutzt man den Hamster-Oozyten-Penetrations-Test (HOP-Test), der auf der Eigenart der Hamster-Eizelle beruht, auch von humanen Spermien penetriert werden zu können, so zeigen sich bei 15% der „guten“ Spermien Chromosomenanomalien (Brandriff et al.,
Die Anzahl der kleineren Mutationen wird jedoch auf das Doppelte geschätzt. Bei Tieren liegt diese Ziffer nur bei etwa 1-2 %. Anhand dieser Daten ist man verführt, den Mann an sich schon als „subfertil“ zu bezeichnen. Es wundert also nicht, dass zusätzliche endogene oder exogene Störfaktoren einen großen Einfluss auf die weitere Reduktion der Fertilität ausüben können.

Störfaktoren, die in eingeschränkter Fertilität resultieren, sind

Gehen wir also davon aus, dass sich der physiologische Zustand des humanen Hodens in den letzten 50 Jahren drastisch verschlechtert hat, so lässt sich anhand dieser doch sehr kurzen Zeitspanne vermuten, dass hier nicht nur genetische Ursachen zu suchen sind, sondern wahrscheinlich auch eine Reaktion auf allgemeine Umweltbedingungen zugrunde liegt. Das beste Modell für diese Annahme ist die Sekte der nordamerikanischen Hutterer, die erwiesenermaßen fertileste Bevölkerungsgruppe. Die Hutterer leben abgeschieden in kleinen Gemeinden auf dem Land und sind somit nicht dem sozioökonomischen und physiologischen Stress der Zivilisation unterworfen. Zwischen 1946 und 1950 war die durchschnittliche Geburtsrate der Frauen 8.06 Kinder/Frau, wobei nur etwa 3% aller Frauen kinderlos waren (Eaton und Mayer, 1953).

1.2 Die Morphologie der Leydigzelle

präpubertärer Leydigzellen durch Sekretion von IL-1β (Khan et al., 1992a) und TGF-α (Khan et al., 1992b).

1.3 Die Rolle der Leydigzelle bei der hormonellen Steuerung

Der Δ^4-Syntheseweg (Pregnenolon \rightarrow Progesteron \rightarrow Androstendion \rightarrow Testosteron) wurde als erstes in der Ratte entdeckt und spielt hier auch die größte Rolle (Slaunwhite und Samuels, 1956). Im Gegensatz dazu wird beim Hund hauptsächlich der Δ^5-Syntheseweg (Pregnenolon \rightarrow Hydroxypregnenolon \rightarrow Dehydroepiandrosteron \rightarrow Androstendion \rightarrow Testosteron) benutzt (Ibayashi et al., 1965). Der Δ^5-Syntheseweg wird weiterhin von Kaninchen, Schweinen, Menschen und höheren Primaten eingeschlagen (Hall et al., 1964; Booth, 1975; Hammar & Petersson, 1986; Preslock & Steinberger, 1977), bei der Maus dominiert der Δ^4-Syntheseweg vor der Pubertät, beim adulten Tier jedoch scheint auch der Δ^5-Syntheseweg eine Rolle bei der Testosteron-Produktion zu spielen (Sheffield und O'Shaughnessy, 1988).

Die Umwandlung von Testosteron in sein 5α-reduziertes Produkt, Dihydrotestosteron (DHT), ein wesentlich stärkeres Androgen als Testosteron, erfolgt in den Zielgeweben. Im Hoden ist 5α-Reduktaseaktivität jedoch sowohl in den Leydigzellen (O`Shaughnessy und Murphy, 1991) als auch in den Sertolizellen bzw. Spermatozyten zu finden (Dorrington und Fritz, 1975).

1.3.1 LH als gonadotroper Stimulus der Testosteron-Synthese

Die Expression von LH ist jedoch nicht nur auf die Hypophyse beschränkt. Auch der Hoden selber stellt kleinere, parakrin wirkende Mengen von LH her (Zhang et al., 1995). Orte der Synthese sind in diesem Fall die Spermatiden der Stufen 2-10.
1.3.2 Herkunft des Cholesterols für die Steroidsynthese

1.3.3 Die Rolle des Transkriptionsfaktors SF-1

1.4 Der Insulin-ähnliche Faktor 3 (INSL3)

Der Insulin-ähnliche Faktor 3 (INSL3) ist ein relativ neues Mitglied der Insulin/IGF/Relaxin-Familie. INSL3 wird auch als Ley-IL oder Relaxin-ähnlicher Faktor (RLF) bezeichnet. Mittlerweile wurden die cDNAs einiger Spezies kloniert. Die Sequenzvergleiche aus Schwein (Adham et al., 1993), Maus (Pusch et al., 1996), Mensch (Burkhardt et al., 1994; Ivell et al., 1997), Rind (Bathgate et al., 1996), Schaf (Roche et al., 1996), Ziege (Hombach-Klonisch et al., 1999), Hirsch (Hombach-Klonisch et al., 2000), Weißbüschelaffe (Zarreh-Hoshyari-Khah et al., 1999) und Ratte (Spiess et al., 1999) zeigen, dass die Variabilität, wie bei dem Verwandten Relaxin, zwischen den Spezies relativ hoch ist. Ähnlich dem Relaxin hat Insl3 eine Drei-Domänen-Struktur, bestehend aus einem Signalpeptid, gefolgt von einem B-Peptid, dem konnektiven C-Peptid und anschließend dem A-Peptid. Die drei Disulfidbrücken sitzen an der gleichen Stelle wie beim Relaxin, so dass von einer ähnlichen Struktur ausgegangen werden kann.

Das \textit{Insl3}-Gen besteht aus zwei Exons und einem Intron, dessen Länge bei den jeweiligen Spezies unterschiedlich ist, und in einem Bereich von 1.2-4.2 kb liegt. Der Promotor ist relativ klein, so dass bei transfizierten BLT-1-Zellen (eine Leydig-Zelllinie) 700 bp eines Promotorkonstrukts für eine hohe Transkription des Reportergens ausreichen (Koskimies \textit{et al.}, 1997). Bis jetzt sind für die Regulation der Transkription des \textit{Insl3}-Gens drei Faktoren charakterisiert worden, die notwendig sind: der in vielen steroidogenen Prozessen beteiligte Transkriptionsfaktor SF-1 (Koskimies \textit{et al.}, 1997; Zimmermann \textit{et al.}, 1998), sein Gegenspieler DAX-1, der die Bindung von SF-1 an den \textit{Insl3}-Promotor verhindert (Koskimies \textit{et al.}, unveröffentlicht) und testikuläres Östrogen, welches \textit{in vivo} die \textit{Insl3}-Expression herunterregelt (Emmen \textit{et al.}, 2000).

Konsequenz eines neu eingeführten Stopkodons. Das resultierende Protein, welches bis jetzt jedoch noch nicht mit einem Antikörper nachgewiesen werden konnte, würde aus dem B-Peptid, einem Teil des C-Peptids und einem neuen C-Terminus bestehen. Da die Sequenz von Exon 1A jedoch bei anderen Spezies keine Entsprechung findet, ist eine funktionelle Bedeutung zweifelhaft. Auch bei der Maus wurde kürzlich eine kleinere Speißenvariante entdeckt (Baker und O’Shaughnessy, unveröffentlicht), bestehend aus dem Anfang des B-Peptids, der distalen Region des C-Peptids und dem A-Peptid. Auch hier konnte bis jetzt kein funktionelles Protein nachgewiesen werden.

Die Expression des INSL3 beim Mann oder männlichen Tier beschränkt sich auf testikulärer Seite auf die Leydigzellen, in denen eine sehr hohe Menge des Transkriptes und auch des Proteins nachgewiesen werden kann (Burkhart et al., 1994; Pusch et al., 1996). Bei Frauen oder weiblichen Tieren kann INSL3 im Ovar, speziell in den Thekazellen der großen antralen Follikel, und im Corpus luteum des Zyklus und der Schwangerschaft sowohl auf mRNA- als auch auf Proteinebene detektiert werden (Bathgate et al., 1996; Balvers et al., 1998; Bathgate et al., 1999; Bamberger et al., 1999). Zusätzlich konnten entweder Transkripte oder Immunreaktivität im Gehirn, in der Schilddrüse, in der Plazenta und auch in den Tubuli seminiferi des Hamsters (Balvers und Ivell, unveröffentlicht) nachgewiesen werden, wobei die Transkriptmenge in diesen Geweben jedoch gering ist (Bathgate et al., 1996; Klonisch et al., unveröffentlicht).

1. Einleitung
Gubernakulums führt zum transabdominalen Dezensus der Gonaden zur inguinalen Region. In der *knockout*-Maus bleibt das Gubernakulum jedoch unterentwickelt und die Gonaden wandern nur bis zur peritonealen Höhle. Ist zusätzlich der Androgen-Rezeptor inaktiviert, verbleiben die Gonaden jedoch durch das gut ausgebildete CSL an ihrer ursprünglichen perirenalen Position. Diese zwei Vorgänge sind also möglicherweise unabhängig voneinander reguliert.

Im erwachsenen Nagetier kann Insl3 eine anti-apoptotische-Wirkung auf Samenzellen ausüben (Kawamura et al., 2004). In der erwachsenen Frau, bei der Konzentration des zirkulierenden INSL3 sehr niedrig ist, scheint die lokale Expression des INSL3 im Eierstock mit der Selektion und Erhaltung des Follikels verbunden zu sein. (Spanel-Borowski et al., 2001; Irving-Rodgers et al., 2002).
2 Material und Methoden

2.1 Bakterienstamm

Als Bakterienstamm wurde verwendet:

Escherichia coli DH5 alpha

Genotyp: \(\text{thi-1, end A1, gyr A96(Na')}, \sup E44, \text{rec A1, hsd R17 (rk-, mk-), rel A1,} \ \Delta (\text{laczYA- arg F}) \text{ U169, deok (}\phi80dlacZ\Delta lacZ) \text{ M15} \)

2.2 Verwendete Primer

Alle DNA-Primer sind in 5’→3’-Orientierung angegeben:

<table>
<thead>
<tr>
<th>name</th>
<th>Sequenz</th>
<th>Spezies</th>
<th>Gen</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>rRLFEx-1s</td>
<td>tgcacatagcagcccagcatgc</td>
<td>Ratte</td>
<td>Insl3</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>rRLF-3'</td>
<td>aaggagggtggcagagctcat</td>
<td>Ratte</td>
<td>Insl3</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>rJAK3-X23</td>
<td>tca(g/c)gagctctctg(a/c)agcttgg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>Genomische PCR</td>
</tr>
<tr>
<td>Props 1</td>
<td>ttaaagcttggtggctggtttgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>Props 2</td>
<td>taaagcttggtggctggtttgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>Props 3</td>
<td>taaagcttggtggctggtttgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>Props 4</td>
<td>taaagcttggtggctggtttgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>Props 5</td>
<td>taaagcttggtggctggtttgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>Props 6</td>
<td>taaagcttggtggctggtttgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>Props 7</td>
<td>taaagcttggtggctggtttgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>Propr 1</td>
<td>tca(g/c)gagctctctg(a/c)agcttgg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>mRLFss-SaCl</td>
<td>cccgagcttggagccaggctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>mRLFaa-BglII</td>
<td>gaaagcttggagccagagcagctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>PCR promoter</td>
</tr>
<tr>
<td>rSF-1A-s</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>rSF-1A-as</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>rSF-1B-s</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>rSF-1B-as</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>rSF-1C-s</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>rSF-1C-as</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>Ratte</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>mSF-1A-s</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>mSF-1A-as</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>mSF-1B-s</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>mSF-1B-as</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>mSF-1C-s</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
<tr>
<td>mSF-1C-as</td>
<td>tgaacctgcttggagccagcagctgctg</td>
<td>maus</td>
<td>Insl3</td>
<td>EMSA DSO</td>
</tr>
</tbody>
</table>
2.3 Verwendete Vektoren

pGEM-T Easy Cloning System

Der pGEM-T-Vektor hat einen f1 Replikationsursprung sowie T7- und SP6-RNA Polymerase Promotoren, die eine multiple Klonierungsstelle flankieren. Inserts können mittels *Eco RI* herausgeschnitten werden. Die Selektion geschieht über Ampicillin-Resistenz und die Unterbrechung der kodierenden für rekombinante Plasmide erfolgt für das α-Peptid der β-Galactosidase („Blau-Weiβ-Selektion“).

pGL3-Luciferasevektoren

p3T (MoBiTec)

Die Selektion dieses Vektors geschieht über Ampicillin-Resistenz und die Unterbrechung der kodierenden Region für das α-Peptid der β-Galactosidase („Blau-Weiβ-Selektion“).
2.4 Isolierung von Gesamt-RNA

Theorie:

Material:
- RNA-Clean™ (AGS)
- Chloroform
- Isopropanol
- 75% Ethanol
- DEPC-Wasser
- UltraTurrax™ (Janke & Kunkel)

Methode:

bei 12000 g zentrifugiert. Der Überstand wurde in ein Eppendorf-Gefäß überführt. Nach Zugabe von einem Volumen (bezogen auf das RNA-Clean™) Isopropanol und heftigem Schütteln wurde 10 Minuten bei Raumtemperatur inkubiert und dann 10 Minuten bei 12000 g und 4°C zentrifugiert. Das Pellet wurde zweimal mit 1 ml 75% Ethanol gewaschen (10 min, 12000 g, 4°C), kurz an der Luft getrocknet und dann in 50 µl DEPC-behandeltem Wasser resuspendiert.

2.5 cDNA-Synthese

Theorie:
Der Erststrang der cDNA wird aus mRNA in Gegenwart von Nukleotiden, dem entsprechenden Reaktionspuffer und durch das Enzym Reverse Transkriptase (RT) synthetisiert, wenn geeignete Matrizen- und Primer-Moleküle vorliegen.

Material:
- Superscript™ II RNase H™ Reverse Transkriptase (200 U/µl; GibcoBRL)
- Oligo-d(T)₁₈₋₂₅-Primer (500 ng/µl; Sigma)
- 5x Erststrang-Puffer (GibcoBRL)
- 10x Erststrang-Puffer (durch Lyophilisierung des 5x Erststrang-Puffers und Rekonstitution in einem halben Volumen Wasser hergestellt)
- 0.1 M DTT (GibcoBRL)
- dNTP-Mix (Genecraft)
- RNaseOUT™
- 5 M Betain (Sigma)
- 2 M Trehalose (Sigma)
- Mineralöl (Sigma)

Methode:
5 µg Gesamt-RNA wurden mit 1 µl Oligo-d(T)₁₈₋₂₅-Primern versetzt, mit DEPC-Wasser auf 12 µl aufgefüllt, für 10 min auf 70°C erhitzt und dann auf Eis abgekühlt. Nach Zugabe von 4 µl 5x Erststrang-Puffer, 2 µl 0.1 M DTT, 1 µl dNTP-Mix, 1 µl RNaseOUT™ und 1 µl Superscript™ II™ wurde die cDNA-Synthese bei 42°C für 60 min in einem Thermoblock durchgeführt. Um Evaporation zu verhindern, wurde der Ansatz mit
Mineralöl überschichtet. Nach der cDNA-Synthese wurde der Ansatz mit Wasser auf 100 µl aufgefüllt.

Bei der alternativen Methode für hocheffiziente cDNA-Synthese mit Betain und Trehalose wurden 1.5 µl Gesamt-RNA mit 1 µl Oligo-d(T)-*Primern* und 12 µl Betain auf 70°C für 5 min erhitzt und dann für 5 min bei 37°C inkubiert. Nach Zugabe von 3 µl 10x Erststrangpuffer, 1.5 µl 1 M DTT, 1.5 µl dNTP-Mix, 9 µl Trehalose und 1 µl Superscript™ RT wurde der Ansatz gut durchmischt, und bei 40°C für 30 min und dann bei 60°C für 60 min in einem Thermoblock inkubiert. Um Evaporation zu verhindern, wurde der Ansatz mit Mineralöl überschichtet. Nach der cDNA-Synthese wurde der Ansatz mit Wasser auf 100 µl aufgefüllt.

2.6 Die Polymerase-Kettenreaktion (PCR)

Theorie:

- **Magnesium-Konzentration:** Die Polymerasen benötigen die zweiwertigen Magnesium-Ionen als Kofaktor. Die benötigte Konzentration ist individuell vom DNA-Template abhängig.
- **Annealing-Temperatur:** Die optimale Hybridisierungstemperatur ist von der Länge und dem G/C-Gehalt der gewählten *Primer* abhängig. Es gibt verschiedene Algorithmen zur Berechnung der Schmelztemperatur eines *Primers*, eine einfaches Verfahren ist die Anwendung der Formel: \(T_m = \Sigma G/C \times 4°C + \Sigma A/T \times 2°C \).
- **Elongationszeit:** Je nach Länge des DNA-Moleküles braucht die DNA-Polymerase eine
bestimmte Zeit für die Elongation. Die Zeitauswahl ist ein wichtiger Parameter für das Gelingen der PCR. Die Taq-Polymerase ist in der Lage, etwa 1000 Nukleotide pro Minute einzubauen.

Material:
- Taq DNA-Polymerase (Genecraft; 5U/µl)
- 10x Taq-Puffer
- 50x Advantage™ Klen-Taq-Polymerase (Clontech)
- 10x Advantage™ Reaktionspuffer (Clontech)
- dNTP-Mix (Genecraft)
- Mineralöl (Sigma)
- 5 M Betain (Sigma)
- Thermocycler (MWG Biotech)

2.6.1 PCR mit cDNA

Methode:
Alle PCR-Ansätze wurden in einem Volumen von 50 µl durchgeführt. Folgender Ansatz wurde in einem 0,5 ml Eppendorf-Gefäß zusammenpipettiert:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x Reaktionspuffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>dNTP-Mix (10 mM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>5´-Primer (100 ng/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>3´-Primer (100 ng/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>DNA-Template (Menge variiert)</td>
<td>x µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>y µl</td>
</tr>
</tbody>
</table>
Die Ansätze wurden mit 50 µl Mineralöl überschichtet und in den auf 95°C vorgeheizten PCR-Block gestellt. Nach Zugabe von 1 µl Taq-Polymerase (0,3 U/µl) wurde die PCR unter folgenden Bedingungen durchgeführt:

95°C 5 min; 2 x (95°C 1 min/ 61°C 45 sec/ 72°C 1 min)
 2 x (95°C 1 min/ 59°C 45 sec/ 72°C 1 min)
 2 x (95°C 1 min/ 57°C 45 sec/ 72°C 1 min)
 2 x (95°C 1 min/ 55°C 45 sec/ 72°C 1 min)
 30 x (95°C 1 min/ 53°C 45 sec/ 72°C 1 min); 72°C 3 min; 10°C ∞.

Aliquots der PCR-Produkte (5-15 µl) wurden auf ein analytisches Agarosegel aufgetragen und elektrophoretisch aufgetrennt.

2.6.2 PCR mit genomischer DNA

Als Alternative bei unzureichenden Amplifizierungen wurde auch hier 5 M Betain eingesetzt oder das Advantage™-System (Clontech) benutzt. Dieses beinhaltet einen Mix aus der Taq- und der Pfu-Polymerase, was bei manchen PCRs für die Amplifizierungseffizienz von Vorteil ist.

2.6.2.1 PCR mit genomischer DNA der Ratte

Wurde eine PCR mit genomischer DNA durchgeführt, so wurde diese mit 50 ng Ratten genomischer DNA als Template und Primer Paar rJAK3-X23 und rRLF-3´ wie in Kapitel 2.6.1 beschrieben, unter folgenden Bedingungen durchgeführt:

95°C 5 min; 30x (95°C 30 sec/ 58°C 30 sec/ 72°C 3 min); 72°C 30 min; 10°C ∞.
2.6.2.2 PCR mit genomischer DNA der Maus

Wie in Kapitel 2.8.1 beschrieben, wurde die PCR mit 50 ng Maus genomischer DNA als Template und Primer Paar mRLF ss-Sacl und mRLF as-BgIII unter folgenden Bedingungen durchgeführt:

95°C 5 min; 2 x (95°C 1 min / 75°C 30 sec/ 72°C 1 min)
 2 x (95°C 1 min / 73°C 30 sec/ 72°C 1 min)
 4 x (95°C 1 min / 71°C 30 sec/ 72°C 1 min)
 4 x (95°C 1 min / 69°C 30 sec/ 72°C 1 min)
 4 x (95°C 1 min / 67°C 30 sec/ 72°C 1 min)
30x (95°C 1 min / 65°C 30 sec/ 72°C 1 min); 72°C 10 min; 10°C ∞.

2.6.3 Herstellung von Rattenpromotor-Deletionskonstrukten durch PCR

Die 5´nicht kodierende Region des Ratten Insl3 Gens, das im letzten Intron des Jak3 Gens liegt, hat 3 Bindungstellen für SF-1.

Zuerst wurde durch eine PCR mit genomischer DNA, wie in Kapitel 2.6.2.1 beschrieben, das Insl3 Gen der Ratte isoliert. Für die Herstellung von Rattenpromotor-Deletionskonstrukten wurde eine PCR mit dem Ratten Insl3 Gen und den Primern ProPs1- ProPs7 als forward Primer und Propr1 als reverse Primer, wie in Kapitel 2.6.1 beschrieben, unter folgenden Bedingungen durchgeführt:

95°C 5 min; 2 x (95°C 30 sec/ 67°C 30 sec/ 72°C 1 min)
 2 x (95°C 30 sec/ 65°C 30 sec/ 72°C 1 min)
 2 x (95°C 30 sec/ 63°C 30 sec/ 72°C 1 min)
 2 x (95°C 30 sec/ 61°C 30 sec/ 72°C 1 min)
30x (95°C 30 sec/ 59°C 30 sec/ 72°C 1 min); 72°C 5 min; 10°C ∞.
2.6.4 Colony-PCR

Für die Colony-PCR wurde nach Eintauchen einer sterilen Pipettenspitze in eine Bakterienkolonie, die Spitze in einem Eppendorf-Gefäß mit 10 µl Wasser mehrmals durchgespült. Der Ansatz wurde für 5 min auf 95°C erhitzt und ein 2 µl Aliquot hiervon in einen fertig angesetzten hot start-PCR-Ansatz (bei 95°C) überführt.

2.7 DNA-Auftrennung mittels Agarose-Gelelektrophorese

Theorie:
Diese Methode basiert auf der Wanderung der DNA im elektrischen Feld durch ein Agarosegel zur Anode. Abhängig von der Größe der DNA wandern die Moleküle unterschiedlich schnell und werden so im Gel aufgetrennt. Diese Technik wird häufig sowohl für die Identifizierung von DNA-Fragmenten (analytisch) als auch zur Aufreinigung und Isolierung der DNA (präparativ) eingesetzt. Die Nukleinsäuren werden durch den interkalierenden Farbstoff Ethidiumbromid (EtBr) im Gel unter UV-Licht sichtbar gemacht.

Material:
-10x TBE
-50x TAE:
-10x Ladepuffer
-Ethidiumbromid (10 mg/ml in Wasser; Roth)
-DNA-Längenstandards: 100bp-Leiter (1 µg/µl; Gibco BRL)
1kb-Leiter (1 µg/µl; Gibco BRL)
-Agarose „Elektrophoresis Grade“ (Gibco BRL)
-Elektrophoresekammer und Zubehör (MWG Biotech)

Methode:
Die Agarose wurde in der benötigten Konzentration (0.8-2%) in 0.5x TBE oder 1x TAE in der Mikrowelle erhitzt, abgekühlt und mit Ethidiumbromid (10 µg/100 ml Gelvolumen) vermischt. Das Gel wurde in einen Gelträger gegossen, der Kamm eingesetzt und bei Raumtemperatur 30 min abgekühlt. Die analytische Nukleinsäurelösung wurde mit
1/10 Volumen des Ladepuffers versehen und bei 100 V aufgetrennt. Zur Ermittlung der Fragmentlängen wurden geeignete Längenstandards parallel aufgetragen. Unter UV-Licht wurden die DNA-Fragmente sichtbar gemacht und fotografiert.

2.8 Reinigung von DNA-Fragmenten aus dem Gel

Theorie:
DNA-Fragmente können aus einem Agarose-Gel isoliert werden, indem die DNA unter Hochsalzbedingungen an eine Silica-Matrix gebunden wird. Agarose-Reste können weggewaschen werden. Mit einem Niedrigsalzpuffer wird die DNA von der Matrix eluiert.

Material:
-Qiaex™ II-Kit (Qiagen)

Methode:
Bei Bedarf wurde die Isolierung der DNA-Fragmente aus dem TAE-Gel mit Hilfe des Qiaex™ II-Kits durchgeführt. Zuerst wurden die Nukleinsäuren unter UV-Licht mit einem sterilen Skapell aus dem Agarosegel ausgeschnitten und in einem dreifachen Volumen an Puffer 1 aufgenommen. Die Glasmatrix aus dem Kit wurde intensiv resuspendiert, 10 µl davon wurden dem Gelstückchen zugesetzt und bei 55°C 10 min inkubiert, wobei das Gel sich auflöste und die DNA an die Glasmatrix adsorbierte. Nach der Zentrifugation (30 s, 16000 g) wurde der Überstand verworfen und die an die Matrix gebundenen Nukleinsäuren einmal mit 500 µl Puffer 1 und zweimal mit je 500 µl Puffer 2 gewaschen. Anschließend wurde die Matrix 30 min bei RT luftgetrocknet und die DNA in 20 µl Wasser unter Schütteln eluiert (10 min, 55°C). Der DNA-Gehalt wurde photometrisch bestimmt.

2.9 Restriktionsverdau von DNA

Theorie:
Restriktionsenzyme sind bakterielle Endonukleasen, die spezifische Muster (Sequenzen) auf einem doppelsträngigen DNA-Molekül erkennen, und die DNA an dieser Stelle
spalten. Die meisten Restriktionsendonukleasen vom Typ II erkennen Tetra-, Penta- oder Hexanukleotidsequenzen. Durch die hydrolytische Spaltung der beiden DNA-Stränge entstehen entweder glatte Enden (blunt ends) oder versetzte 5´- bzw. 3´-überstehende Enden (sticky ends). Das 5´-Ende der DNA trägt dabei immer eine Phosphatgruppe, das 3´-Ende eine Hydroxylgruppe. Die durch Restriktion entstandenen DNA-Fragmente können für eine Ligation und zur Herstellung einer Sonde verwendet werden.

Material:
- Diverse Restriktionsenzyme und -puffer (New England Biolabs)
- Thermoblock (Heraeus)

Methode:
Es wurden entweder Insert-tragende Plasmide, doppelsträngige DNA-Fragmente oder genomische DNA wie folgt eingesetzt:

<table>
<thead>
<tr>
<th></th>
<th>Analytische Spaltung</th>
<th>Präparative Spaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>ca. 500 ng</td>
<td>ca. 5-20 µg</td>
</tr>
<tr>
<td>H₂O</td>
<td>x µl</td>
<td>x µl</td>
</tr>
<tr>
<td>10x Puffer</td>
<td>2 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>Enzym (10-20 U/µl)</td>
<td>0,5 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>20 µl</td>
<td>100 µl</td>
</tr>
</tbody>
</table>

Analytische Spaltungen wurden für 1 h, préparative Spaltungen ü.N. meist bei 37°C inkubiert.

2.10 Ligation von DNA

Theorie:
überlappende Enden (*sticky ends*) als auch glatte Enden (*blunt ends*). Durch diese Technik ist man in der Lage ein fremdes, lineares DNA-Fragment mit einem linearisierten Vektor zu ligieren, wodurch ein neues rekombinantes Plasmid entsteht.

Material:
- 5x Ligase-Puffer (GibcoBRL)
- T4-DNA-Ligase (1 U/µl; GibcoBRL)

Methode:
Die Ligationen wurden in einem 10 µl Reaktionansatz durchgeführt:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vektor-DNA (10 ng/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Fremd-DNA</td>
<td>x µl</td>
</tr>
<tr>
<td>Ligase-Puffer (5x)</td>
<td>2 µl</td>
</tr>
<tr>
<td>T4-DNA-Ligase</td>
<td>1 µl</td>
</tr>
<tr>
<td>H2O</td>
<td>x µl</td>
</tr>
<tr>
<td>Σ</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

Das molare Verhältnis von Vektor zum DNA-Fragment war 1:3, wenn die beiden zu ligierenden DNA überlappende Enden besaßen. Für blunt end-Ligationen wurde das DNA-Fragment in einem größeren Überschuß eingesetzt (1:10), sowohl bei pGEM-T Easy als auch bei pGL3 wurden die Ligationen bei 4°C ü.N. durchgeführt.

2.11 Herstellung von kompetenten Bakterien

Theorie:
Die meisten Methoden für die Transformation, d.h. für die Einführung von Fremd-DNA in Bakterien, basieren auf der Beobachtung, dass Bakterien, die zuerst mit eiskalter CaCl2-Lösung behandelt und danach kurz erhitzt werden, mit Fremd-DNA transfiziert werden können (die Bakterien sind „kompetent“ gemacht worden). In dieser Arbeit wurde eine Ein-Schritt-Methode für die Herstellung kompetenter *E.coli*-Zellen angewendet.
Material:
- LB-Medium
- LB-Antibiotikum-Platten
- TSS
- *E.coli* DH5α

Methode:
E.coli DH5α wurden bei 37°C im Schüttelinkubator in LB-Medium bis zur frühen exponentiellen Phase (OD₆₀₀ = 0.3-0.4) gehalten und anschließend pelletiert (Heraeuszentrifuge, 1000 g, 4°C, 10 min). Das Pellet wurde im Originalvolumen TSS resuspendiert, für die Lagerung in 100 µl Aliquots unmittelbar in einem Trockeneis/Ethanolbad schockgefroren und bis zum Gebrauch bei -80°C aufbewahrt. Die Transformationseffizienz wurde durch Transformation eines Aliquots mit 100 pg DNA-Plasmid bestimmt und sollte bei 10⁷-10⁸ Transformanden/µg Plasmid-DNA liegen.

2.12 Transformation und Ausplattieren der Bakterien

Theorie:

Material:
- Kompetente *E.coli*-Zellen
- LB-Medium
- LB-Antibiotikum-Platten (mit 100 µg Ampicillin/ml Agar)
- Brutschrank (Heraeus)
- Schüttelinkubator (Heraeus)
- Ampicillin (100 mg/ml; Sigma)
- 0.5 M IPTG (Sigma)
- 10% (w/v) X-Gal (Sigma) in DMSO
- 0.5 M β-Mercaptoethanol (Invitrogen)

Methode:
Die kompetenten Zellen (100 µl Aliquots) wurden auf Eis aufgetaut und sofort mit 0.5 µl β-Mercaptoethanol gemischt. Jeweils 5 µl der Ligationsansätze wurden vorsichtig zusammenpipettiert und mit der Pipette vermischt. Nach einer 30-minütigen Inkubation auf Eis folgte ein Hitzeschock von 30-45 sec bei 42°C; danach wurden die Zellen für 1-2 min abgekühlt. Nach Zugabe von 400 µl SOC-Medium wurde der Ansatz für 1 h bei 37°C und 225 rpm in den Schüttelinkubator gestellt, um die vorliegende Antibiotika-Resistenz zu exprimieren. Durch Zentrifugation wurde das Volumen des Ansatzes auf 1/3 eingeengt und anschließend auf einer LB-Platte mit dem entsprechenden Antibiotikum ausgestrichen. Wenn eine Blau/Weiß-Selektion notwendig war, so wurden auf einer Agarplatte (⌀ 90 mm) vorher 20 µl 10% X-Gal und 20 µl 0,5 M IPTG ausgestrichen. Eine Inkubation bei 37°C erfolgte über Nacht. Am nächsten Tag wurden die rekombinannten Kolonien (weiße Kolonien) aufgenommen und in 6 ml LB-Medium mit Antibiotikum (Ampicillin 100 µg/ml) bei 37°C, 225 rpm im Schüttelinkubator für 12 h bis zu einer OD₆₀₀ = 1 inkubiert.

2.13 Plasmid-Präparationen

Theorie:
Durch das Antibiotikum werden plasmidtragende Bakterienkolonien selektiert und im LB/Ampicillin-Medium vermehrt. Die Plasmid-DNA wird über eine alkalische Lyse aus den Bakterien isoliert. Je nach Kulturr volumen wird von Minipräparationen (3 ml), Midipräparationen (100 ml) oder Maxipräparationen (500 ml) gesprochen. Durch Abtrennung der bakteriellen Endotoxine während der Plasmidpräparation wird die Transfektion in sensitive eukaryotische Zellen deutlich verbessert.
2.13.1 Plasmid-Minipräparation

Material:
- Bakterienkulturen
- Lösung 1, 2 und 3
- TE-Puffer
- RNase A (20mg/ml; Roche)
- Chloroform
- 100% Ethanol
- 80% Ethanol
- NucleoSpin™-Kit

Methode:
3 ml LB/Ampicillin-Medium wurden mit einer Einzelkolonie angeimpft und ü.N. bei 37°C unter Schütteln inkubiert. Nach der Zentrifugation der Übernachtkultur wurde das *Pellet* in 100 µl Lösung 1 + RNase A resuspendiert (1 min, 16000 g, 4°C). Die RNase A in Lösung 1 baut die bakterielle RNA ab. Anschließend wurde 200 µl Lösung 2 zugesetzt und 2 min inkubiert. Die Lösung 2 bewirkt eine alkalische Lyse der Bakterien sowie eine alkalische Denaturierung der DNA. Außerdem denaturiert das enthaltene SDS die Membrankomponenten. Danach wurde der Ansatz mit 150 µl Lösung 3 und 200 µl Chloroform versetzt und vermischt. Die saure Lösung 3 denaturiert die bakteriellen Proteine sowie die mit Membrankomponenten assoziierte genomische DNA, die durch Zentrifugation eine Interphase bilden. Außerdem wird die Plasmid-DNA durch Lösung 3 renaturiert. Nach der Zentrifugation (16000 g, RT, 5 min) wurde der plasmidhaltige Überstand in ein Eppendorf-Gefäß überführt, mit zwei Volumen 100% Ethanol versetzt und gut gemischt. Die Plasmid-DNA fiel in dem Ethanol als Kaliumsalz aus. Sie wurde abzentrifugiert (16000 g, 4°C, 5 min), mit 80% Ethanol gewaschen, an der Luft getrocknet und danach in 50 µl Wasser aufgenommen. Die Qualität der erhaltenen Plasmid-DNA reicht aus für Restriktionsspaltungen und PCR-Analysen. Sollte eine Fluoreszenz-Sequenzierung durchgeführt werden, so wurde die isolierte Plasmid-DNA mit dem NucleoSpin™-Kit (Macherey & Nagel) nach Angaben des Herstellers weiter aufgereinigt.
2.13.2 Endotoxin-freie Plasmid-Maxipräparation

Material:
- QIAGEN Endofree Plasmid Kits
- Bakterienkulturen
- Chloroform
- 100% Ethanol
- 70% Ethanol
- Isopropanol

Methode:
Eine Minikultur wurde mit einer Einzelkolonie angeimpft und 8 h bei 37°C geschüttelt. Einer 100 ml Kultur (LB/Ampicillin-Medium) wurde 250 µl der Vorkultur zugesetzt und ü.N. inkubiert. Die Bakterien wurden in einer Tischzentrifuge (6000 g, 15 min, 4°C) pelletiert, in 10 ml Lösung P1 resuspendiert, in 10 ml Lösung P2 lysiert, 5 min inkubiert und mit 10 ml gekühlter Lösung P3 neutralisiert. Danach wurde das Lysat in eine QIAfilter Cartridge überführt und 10 min bei Raumtemperatur inkubiert. Anschließend wurde es in ein 50 ml Röhrchen filtriert und es wurden 2.5 ml Lösung ER zugesetzt. Die Plasmidlösung wurde 30 min auf Eis inkubiert und auf die Säule gegeben, welche zuvor mit 10 ml Lösung QBT äquilibriert wurde. Die Säule wurde zweimal mit 30 ml Lösung QC gewaschen. Dann wurde die Plasmid-DNA mit 15 ml Lösung QN von der Säule eluiert. Um eventuelles Säulenmaterial von der DNA-Lösung zu entfernen, wurden ihr einmal 10 ml Chloroform zugesetzt, gut gemischt und 2 min bei RT zentrifugiert (4000 g). Die DNA aus dem Überstand wurde durch Zugabe von 0.7x Volumen Isopropanol gefällt und zentrifugiert (4000 g, 4°C, 30 min). Nach dem Waschen des DNA-Pellets mit 5 ml 70% Ethanol wurde die DNA luftgetrocknet und in 500 µl Wasser aufgenommen. Die Ausbeute und Reinheit wurden photometrisch bestimmt.
2.14 Konzentrationsbestimmung von Nukleinsäuren

Theorie:

Material:
- Spektralphotometer (Ultrospec 3000, Pharmacia)

Methode:

2.15 DNA-Sequenzierung

Theorie:
Das hier beschriebene Verfahren beruht auf der enzymatischen Synthese einer komplementären Kopie des zu sequenzierenden, einzelsträngigen Templates. Das Ausgangsmaterial kann dabei auch in Form doppelsträngiger Plasmid-DNA aus Mini- oder Maxipräparationen vorliegen, deren Stränge vor der eigentlichen Sequenzreaktion denaturiert werden. In den meisten gebräuchlichen Vektoren befinden sich, beidseitig die „multiple cloning site“ (MCS) flankierend, kurze Sequenzen, an die über komplementäre Basenpaarung fluoreszenzmarkierte Oligonukleotide als Primer binden können. Dabei handelt es sich in der Regel um gängige Primer, z.B. T7, T3, SP6 und Universal-Primer. In allen Sequenzreaktionen, die den gleichen Primer benutzen, werden durch eine DNA-Polymerase also Moleküle synthetisiert, die das gleiche 5'-Ende besitzen. Für jede
Sequenzreaktion werden vier Reaktionsgemische angesetzt, in denen sich alle vier
dNTPs befinden. In jedem der vier Gemische befindet sich darüber hinaus jeweils
zusätzlich eines der vier ddNTPs; diesen Verbindungen fehlt nicht nur die 2’-, sondern
auch die 3’-Hydroxygruppe, so daß jeder Einbau durch die DNA-Polymerase zu einem
Kettenabbruch führt. In jedem Ansatz befindet sich somit nach der Reaktion eine
Population von DNA-Molekülen, die fluoreszenzmarkiert sind und ein identisches 5’-Ende
haben, sich aber in der Länge bis zum jeweils basenspezifischen 3’-Ende hin
unterscheiden. Auf einem denaturierenden Gel können die Reaktionsprodukte,
nebeneinander aufgetragen, nach ihrer Größe aufgetrennt und durch Laseranregung
detektiert werden.

Material:
-SequiTherm Excel™ II (Epicentre Technologies)
-10% APS
-100% Ethanol
-10% Deconex
-10x HTBE
-Sequagel XR (National Diagnostics)
-Sequagel Complete (National Diagnostics)
-Formamid (GibcoBRL)
-LI-COR 4000 Sequenzierer (MWG Biotech)
-Basemager IR™-Software (MWG Biotech)
-IRD800-markierte Sequenzierprimer (MWG Biotech)

Methode:
Sequenzierung
Folgende Komponenten wurden in einem 0.5 ml Eppendorf-Gefäß gut durchmischt
(Premix):
3.5x SequiTherm Excel™ II-Puffer 7.2 µl
fluoreszenzmarkierter Primer (1 pmolar) 1 µl
Betain (5 M) 2.8 µl
Plasmid-DNA (70 ng pro kb) 3 µl
SequiTherm Excel II DNA-Polymerase 1 µl
In vier 0.5 ml Eppendorf-Gefäßen (A, C, G, T beschriftet) wurden jeweils 2 µl SequiTherm Excel II™-LC Terminations-Mix A, C, G, T vorgelegt. Diesen wurde jeweils 4 µl des Premix zugegeben, gut durchmischt, mit Mineralöl überschichtet und in folgendem Programm auf einem Thermocycler gefahren:

95°C 5 min
95°C 30 sec
50°C 20 sec 35 Zyklen
70°C 1 min
72°C 10 min
Pause 20°C

Nach Zugabe von 3 µl Stop>Loading-Puffer zu jeder Reaktion wurden die Proben eingefroren. Vor der elektrophoretischen Auftrennung wurden die Proben für 5 min bei 70°C denaturiert.

Gelplatten vorbereiten

Gießen des Sequenzgels
In einem 100 ml Becherglas wurden angesetzt:

24 ml Sequagel XR
6 ml Sequagel Complete
3 ml Formamid
300 µl APS (10%)

Die Komponenten wurden durch Schwenken gut durchmischt, das Gel zwischen zwei 41 cm-Glasplatten nach Angaben des Hersteller gegossen und 1 h lang polymerisiert.
2. Material und Methoden

2.16 Zellkultur

2.16.1 Kultur

Die Zellen wurden in handelsüblichen Zellkulturflaschen oder 6- oder 12 well Platten bei 37°C in einer Kohlendioxid-haltigen Atmosphäre (5% CO₂) inkubiert. Bei Erreichen von Konfluenz wurden die Zellen mit einer 0,5% Trypsinlösung vom Schalenboden abgelöst und in geringerer Zellzahl in neuem Medium angesetzt (sog. Passage). Wo nötig, wurden Passagen mit fester Zellzahl durchgeführt, dazu wurden Aliquots suspendierter Zellen in einer Neubauer-Kammer ausgezählt.

2.16.2 Lagerung bei -80°C

Zur Lagerung wurden Zellsuspensionen in Kulturmäldium mit 10% v/v DMSO und 20% FCS v/v versetzt und schonend gefroren. Die endgültige Lagerung erfolgte bei -80°C.
2.16.3 Zelllinien

- **R2C: Ratten Tumor Leydig Zellen**
 R2C Zellen (ATCC CCL-97) wurden in HAM’s F10 kultiviert, 15% v/v Pferdeserum (HS), 2,5% v/v fötales Kälberserum (FCS), 2% v/v L-Glutamin (200mM), sowie 1% v/v Penicillin/Streptomycin (500µg/ml;5000IU/ml) wurden zugesetzt.

- **MA-10: Maus Tumor Leydig Zellen**
 MA-10 Zellen (Ascoli, 1981) wurden in Dulbecco´s modified Eagle´s medium (DMEM, 4,5 g/l Dextrose) / HAM’s F12 Medium (1:1) mit 7,5% v/v Pferdeserum (HS), 2,5% v/v FCS, 1% v/v L-Glutamin (200mM), und 2% v/v Penicillin/Streptomycin (500µg/ml;5000IU/ml) kultiviert.

- **COS-7: Affen Nieren Zellen**
 COS-7 Zellen (ATCC CRL-1651) wurden in DMEM/HAM’s F12 Medium (1:1) kultiviert, 10% v/v FCS, 1% v/v L-Glutamin (200mM), sowie 1% v/v Penicillin/Streptomycin (500µg/ml;5000IU/ml) wurden zugesetzt.

- **CHO: Hamster Eierstock Zellen**
 CHO Zellen (ATCC 85050302) wurden in DMEM/HAM’s F12 Medium (1:1) mit 5% v/v FCS, 1% v/v L-Glutamin (200mM), und 0,5% v/v Penicillin/Streptomycin (500µg/ml;5000IU/ml) kultiviert.

2.17 Bestimmung der Progesteron-Konzentration mittels

ELISA

Theorie:
Bei dem Enzyme-Linked immunosorbent assay (ELISA) handelt es sich um einen kompetitiven Doppelantikörper-Enzymimmunoassay mit Solid-Phase-Technik. Die immunologische Reaktion findet überwiegend an den mit Goat-Anti-Rabbit-Antikörpern beschichteten Wells der Immuno-Module statt. Der Testablauf lässt sich in drei Schritte unterteilen:
1. Reaktionsschritt (Assay-Inkubation)

Bei diesem Schritt konkurrieren das Progesteron aus der Probe und ein Progesteron-Biotin-Derivat (Tracer) um die Bindung an den zugesetzten Progesteron-Antikörper. Die entstehenden Progesteron- und Progesteron-Biotin-Antikörperkomplexe werden gleichzeitig über den zweiten Antikörper (Goat-Anti-Rabbit) an die Wells gebunden.

2. Reaktionsschritt (HRP-Streptavidin-Inkubation)

Im zweiten Reaktionsschritt wird an Streptavidin gekoppelte Meerrettich-Peroxidase (HRP-Strep.) zugegeben, die dann selektiv nur von dem biotinhaltigen Immunkomplex (über das Streptavidin) gebunden wird.

3. Reaktionsschritt (HRP-Substrat-Inkubation)

Die über den Immunkomplex an die Wells gebundene HRP setzt das farblose Substrat Tetramethylbenzidin (TMB) zu einem blauen Farbstoff um, der nach H₂SO₄-Zugabe eine gelbe Farbe aufweist. Die Farbentwicklung des Chromogens ist abhängig von der an die Wells gebundene Enzymmenge und damit umgekehrt proportional zur gesuchten Progesteron-Konzentration.

Material:

E-FBS-Puffer:
(bei 4°C)
0,1 M Na₃PO₄, PH7,0
0,15 M NaCl
0,0005 M EDTA
0,2 % (w/v) BSA
0,01% (v/v) Thimerosal

Substratpuffer:
4,8 M Na-Acetat
0,24 M Citronensäure, Lagerung: bei RT

HRP-Substratlösung:
25 ml H₂O (RT)
500 µl Substratpuffer (s.o.)
500 µl H₂O (0,2%, s.u.)
500 µl 0,5% TMB (s.u.), TMB-Lösung
unter Mischen zugeben, die Mischung wird im Dunkeln bei RT maximal für 2 h gelagert.

Waschpuffer:
- 0,02% (v/v) Tween 20 in H₂O
- 0,5% (w/v) NaCl; Lagerung bei 4°C

Progesteron-Antiserum: 1:50.000 in E-NAP-Puffer + 0.0005 % Metanilgelb; bei 4°C

Progesteron-11α- Biotin (Tracer) 40 fMol/ml in E-NAP-Puffer + 0.0005 % Bromphenolblau; bei 4°C

Progesteron-Standards:
- **Stockstandard:** Lyophilisat, Lagerung bei 4°C
- **Stocklösung (B):** 3,402 µg/ml in E-PBS-Puffer, Ein lyophilisiertes Aliquot in exakt definiertem Volumen H₂O rückschütten. (das exakte Volumen ist den Angaben auf dem Karton der jeweiligen Charge zu entnehmen.); Haltbarkeit bei 4°C mehr als 3 Monate
- **HRP-Streptavidin Lösung:** 167 µg/ml in E-PBS-Puffer; 100µl Aliquots; Lagerung bei 4°C

H₂O₂, 0,2 % (v/v) in H₂O: Lagerung bei RT und in Dunkelheit

TMB, 0,5 % (v/v) in DMSO, Lagerung bei RT und in Dunkelheit

2M H₂SO₄ Lagerung bei RT

Immuno-Module: (Nunc); mit Goat-anti-Rabbit-γ-Globulin beschichtet.

Rahmen und Deckel: (Nunc)
Methode:
Zuerst wurden verschiedene Verdünnungen der Proben hergestellt. Bei Messung von Progesteron in Zellkulturen und Medien bietet es sich an, die Standards im gleichen Kulturmedium (+ 0.01 % Thimerosal) anzusetzen. Sowohl der Standard als auch die Proben wurden mit dem E-NAP-Puffer verdünnt. Die Reaktionen wurden nach dem folgenden Pipettierschema durchgeführt:

Pipettierschema:

<table>
<thead>
<tr>
<th>Position</th>
<th>Probe</th>
<th>E-NAP-Puffer</th>
<th>Medium</th>
<th>Standard</th>
<th>Probe</th>
<th>Prog.-Biotin</th>
<th>Anti-körper</th>
<th>µl</th>
<th>µl</th>
<th>µl</th>
<th>µl</th>
<th>µl</th>
<th>µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1/2</td>
<td>NSB</td>
<td>100</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1/2</td>
<td>Bo</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 1/2</td>
<td>0.14 ng/ml</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 1/2</td>
<td>0.42 ng/ml</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1/2</td>
<td>1.26 ng/ml</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 1/2</td>
<td>3.78 ng/ml</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 1/2</td>
<td>11.34 ng/ml</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 1/2</td>
<td>34.02 ng/ml</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 3/4</td>
<td>Probe</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assayinkubation: Je nach Anzahl der Proben wurden die benötigten Immuno-Module auf einen Rahmen gesteckt und mit 375 µl E-NAP-Puffer für 2 min bei RT inkubiert. Die Wells wurden durch Dekantieren entleert und die Platte mehrmals auf Zellstoff kräftig ausgeklopft.
Die Assayplatte wurde mit Assaykomponenten wie folgt beschichtet und 2 Stunden bei RT und anschließend 30 min bei 4-6°C in einer H₂O-gesättigten Kammer in Dunkelheit ohne Schütteln inkubiert.

HRP-Streptavidin-Inkubation: Kurz vor Beendigung der Assay-Inkubation wurde die HRP-Streptavidinlösung mit kaltem E-PBS-Puffer angesetzt und bis zur Verwendung kalt gehalten. Die Assayplatte wurde entleert und mehrmals auf Zellstoff kräftig ausgeklopft.

2. Material und Methoden
Pro Well wurden 200 µl frische HRP-Streptavidinlösung zügig hineinpipettiert und 30 min inkubiert (4°C, Dunkelheit).

Waschschritt: Die Assayplatte wurde entleert und mehrmals auf Zellstoff ausgeklopft. Pro Well wurde 400 µl kalter Waschpuffer pipettiert und 1 min stehen gelassen. Dann wurde die Assayplatte wieder entleert und auf Zellstoff kräftig ausgeklopft. Dieser Waschvorgang wurde 3x in wechselnder Pipettierrichtung wiederholt, bevor die Platten bei RT für 5 min temperiert wurden.

Substratinkubation: Nach zügigem Pipettieren von 250 µl HRP-Substratlösung pro Well wurde die Platte für 40 min bei RT in in H₂O-gesättigter Kammer, im Dunkeln inkubiert, wobei ein blauer Farbumschlag zu beobachten ist.

Reaktionsstop und OD-Messung: Die Reaktion wurde nach Zugabe von 50 µl H₂SO₄ /Well gestoppt, wobei die blaue Farbe zu gelber Farbe umgewandelt wird. Die Intensität der gelben Farbe wird bei 450 nm gemessen. Nach Messung der OD wurden die Platten über die Software „EasyFIT“ ausgewertet. Zunächst wurde von der Software der Wert für die unspezifische Bindung (NSB) von allen Messwerten abgezogen (OD_(B)−OD_(NSB)). Im nächsten Schritt wurden diese Extentionswerte der Standards (linear) gegen die Konzentration dieser Standards (log) als Graph aufgetragen. Dann wurde durch „EasyFIT“ eine sigmoidale Ausgleichskurve, berechnet nach einer 4-Parameter-Formel, durch die Punkte gelegt. Die Konzentration der Proben konnte so durch das Programm über die OD-Werte der Proben an der Standardkurve errechnet werden. Für weitere Auswertungen wurde auf das Programm „Prism“ zurückgegriffen. Zunächst wurde der Wert %B/B₀ jeder Probe über die OD mit Hilfe folgender Formel errechnet:

\[
\%B/B_0 = \frac{OD_{(B)} - OD_{(NSB)}}{B_0} \times 100
\]

wobei B₀ = OD (Nullstandard) − OD (NSB) ist und B eine beliebige Probe bezeichnet.

„Prism“ stellte ähnlich wie „EasyFIT“ einen Graph der %B/ B₀-Werte der Standards gegen ihre Konzentration auf. Auch hier wurde über eine 4-Parameter-Formel eine sigmoidale Ausgleichskurve errechnet.
2.18 Transfektion

Theorie:

2.18.1 Transfektion mittels Liposomen

Durch ihre Ähnlichkeit mit zellulären Membranen sind Liposomen besonders gut geeignet, schlecht membrangängige Stoffe wie z.B. DNA-Moleküle in Zielzellen einzuschleusen (Felgner et al., 1987). Wegen ihrer vergleichsweise hohen Effizienz wurde diese Methode zur transienten Transfektion von MA-10 Zellen, R2C Zellen, CHO Zellen und COS-7 Zellen eingesetzt.

Material:
- LipofectAMIN 2000 (Invitrogen)
- Medium (Gibco)
- PBS (Gibco)
- 5x Passive Lysis Puffer (Promega)

Methode:
Die Transfektion wurde mit LipofectAMINE 2000-Reagens (Invitrogen) nach den Empfehlungen des Herstellers durchgeführt. 2x10^5 Zellen/ Well der zu transfizierenden Zellart wurden in einer 12-Well-Platte mit 1ml Medium angesetzt. Je 6µg Promotor-Luciferase Konstrukt, 1µg SF-1 Expressions-Vektor, und 1µg Beta-Galactosidase Expressions-Vektor als Kontrolle für die Transfektionseffizienz in 100 µl Medium (ohne

Im Fall der Stimulation mit Dexamethason wurde den Zellen nach dem Absaugen der Transfektionslösung 10^{-7} M Dexamethason (Firma: Sigma, # D4902) oder Kontrollvehikel zugesetzt und über Nacht inkubiert.

2.19 „Reporter gene assays“

2.19.1 Luciferase-Messung

Theorie:

Material:
- Luciferase reporter gene assay system (Promega)
- Luminometer Tube (55476, Sarstedt)
- Luminometer (Lumat 9501, Bertrand)
Methode:
20 µl des Lysats wurde zu 100 µl Luciferase Assay Reagent (Promega) in einem Luminometer-Tube pipettiert. Sofort danach wurde die Lichtemission der Reaktion 10 sec im Luminometer gemessen.

2.19.2 β-Galactosidase-Messung

Theorie:

Material:
- Tropix Galacto-Light™ assay system (PE Biosystems)
- Luminometer Tube (55476, Sarstedt)
- Luminometer (Lumat 9501, Bertrand)

Methode:

2.20 „Electrophoretic mobility shift assay“ (EMSA)

Theorie:
Die Methode des EMSA wird zur Untersuchung der Bindung von Kernproteinen spezifischer DNA-Sequenzen eingesetzt. Erforderlich ist zum einen die Gewinnung löslicher Kernproteine aus Zellkernen oder gereinigten Transkriptionsfaktoren, zum anderen die radioaktive Markierung einer DNA-Sequenz (durch Restriktionsverdau
gewonnene Promotorabschnitte oder synthetische doppelsträngige Oligonukleotide). Die Kernproteine und das radioaktiv markierte Promotorfragment werden miteinander inkubiert und auf ein nicht denaturierendes Polyacrylamidgel aufgetragen. Wird eine DNA-Sequenz vom Kernprotein spezifisch gebunden, verringert sich die Wanderungsgeschwindigkeit des Komplexes im Gel im Vergleich zur Wanderungsgeschwindigkeit der ungebundenen DNA. Es entstehen verschiedene DNA-Banden, welche sich mittels Autoradiographie auf einem Röntgenfilm dokumentieren lassen.

Material:

- Acrylamid 40%: National Diagnostics
- Ammoniumpersulfat (APS): Gibco BRL
- Tetramethylthylendiamin (DMEM): Sigma
- Ficoll: Sigma
- Dithiothreitol (DTT): Gibco BRL
- Polydeoxyadenylic-Thymidilic Acid (dAdT): Sigma
- MgCl$_2$: Sigma
- BSA: Biolabs
- „steroidogenic factor-1 (SF-1)“ in vitro translatiert (Kap. 2.20.2)
- Spannungsquelle: Pharmacia
- Geltrockner SGD 2080: Savant
- Röntgenfilmentwickler Hyperprocessor: Amersham
- Röntgenfilm Biomax: Kodak

Lösungen

- **Bindungspuffer:**
 - 10 mM Hepes, pH 8
 - 0,5 mM EDTA
 - 100 mM NaCl

- **Puffer R**
 - 2,5 µl 10 x Bindungspuffer
 - 2,5 µl 5% BSA
 - 3,5 µl 87% Glycerol
1 µl 25 mM EDTA, pH 8
0,5 µl 50 mM DTT

-TBE Puffer 0,45 M Tris-Borat
10 mM EDTA, pH 8,3

Methode:

2 µl Kernprotein-Extrakt oder *in vitro* Translationsansatz wurden mit 10 µl Puffer R, 5 µl Ficoll (20 %), 1 µl Polydeoxyadenylic-Thymidilic Acid (1 µg/µl), 0,25 µl 1 M MgCl₂ versetzt und ad 23 µl mit doppelt destilliertem Wasser aufgefüllt. Der Reaktionsansatz wurde 15 min bei Raumtemperatur inkubiert, bevor die entsprechende Menge markiertes DNA-Fragment (2µl/Reaktion) hinzugefügt wurde. Es folgten 30 min weiterer Inkubation bei Raumtemperatur, der Ansatz wurde auf ein 4 %iges Polyacrylamidgel in 0,5 x TBE- Puffer geladen und die Komplexe bei 220 Volt elektrophoretisch aufgetrennt. Das Gel wurde auf Whatman-Papier übertragen, 1 bis 2 Stunden bei 80°C unter Vakuum getrocknet und über Nacht auf Röntgenfilm exponiert. Zur Charakterisierung der vorhandenen Kernproteine wurden Kompetitionsexperimente durchgeführt. Spezifisch bindende, nicht markierte doppelsträngige Oligonukleotide mit bekannter Sequenz fungierten als Kompetitoren zu den markierten Promotorfragmenten. Entsprech die Sequenz der Oligonukleotide der Bindungsstelle eines vorhandenen Bindungsproteins, konnte das markierte DNA-Fragment nicht mehr gebunden werden. Dadurch wurde die diesem Proteinkomplex entsprechende Bande im Autoradiogramm kompetiert.

2.20.1 Herstellung von Kernproteinen aus Zellen

Material:

-75 cm² Nunc Kultur Flasche von Zellen (MAO-10 oder R2C Zelllinien)
-Phosphate buffered Saline (PBS)
2. Material und Methoden

Puffer A:
- 10 mM Hepes- KOH pH 7,9
- 1,5 mM MgCl₂
- 10 mM KCl
- 0,5 mM DTT
- 0,2 mM PMSF

Puffer C:
- 10 mM Hepes- KOH pH 7,9
- 24% Glycerol
- 420 mM NaCl
- 1,5 mM MgCl₂
- 0,2 mM EDTA
- 0,5 mM DTT
- 0,2 mM PMSF

Methode:
Nach Erreichen einer Zellzahl zwischen 5×10^5 und 10^7 pro Kulturflasche wurde das Medium abgesaugt, die Zellen wurden 2 mal mit PBS gewaschen und anschließend in 1 ml PBS abgekratzt. Die Zellsuspension wurde in ein Eppendorf-Tube transferiert, und die Zellen durch zehnsekündige Zentrifugation bei Raumtemperatur abzentrifugiert. Das Pellet wurde in 400 μl Puffer A resuspendiert und 10 min auf Eis inkubiert. Nach 10 sec. Vortexen wurde 10 min bei Raumtemperatur zentrifugiert und der Überstand wurde verworfen. Das Pellet wurde in 20 bis 100 μl Puffer C resuspendiert und 20 min auf Eis inkubiert. Nach 2 min Zentrifugation bei 4°C wurde der Überstand (Zellkernproteine) aliquotiert und bei -80 °C gelagert.

2.20.2 In vitro-Translation des klonierten Transkriptions-Faktors SF-1

Es wurde das TnT-System (Promega) verwendet, das durch die Verwendung prokaryontischer RNA-Polymerasen und eines eukaryotischen Proteinsynthesesystems die Transkription und Translation von Plasmid-DNA in einem Reaktionsansatz erlaubt:
Material:

Rabbit reticulocyte lysate (Promega)
TnT Puffer (Promega)
T7 RNA polymerase (1 U/µl Promega)
amino acid mix minus Methionine
amino acid mix minus Leucine
HPRI (Human Placenta Ribonuclease inhibitor) (40 U/µl Promega)
Plasmid-DNA (SF-1 Expressionsvektor) (Stedronskey *et al.*, 2002)

Methode:

Die Reaktion wurde nach folgendem Pipettierschema auf Eis angesetzt:

- **TNT-Reaktion:**
 - 25 µl Rabbit reticulocyte lysate
 - 2 µl TnT Puffer
 - 1 µl T7 RNA polymerase
 - 1 µl amino acid mix minus Methionine
 - 1 µl amino acid mix minus Leucine
 - 1 µl HPRI ribonuclease inhibitor
 - 1 µl Plasmid-DNA (=1 µg)
 - ad 50 µl Wasser

Der Reaktionsansatz wurde für 1 Stunde bei 30°C inkubiert, aliquotiert und bei -80°C gelagert.

2.20.3 Herstellung von doppelsträngigen Oligonukleotiden

Es wurden DNA-Sequenzen mit den SF-1 Bindungstellen SF-1 A, B, und C, sowohl von der Ratte als auch von der Maus, als Oligonukleotide synthetisiert (*Kapitel 2.2*) und zu Doppelsträngen hybridisiert.
Material:

Sense Oligonuklotid (Metabion)
Antisense Oligonuklotid (Metabion)
NaCl (Sigma)

Methode:
Für die Hybridisierung wurden je 20µg der Oligonuklotide eingesehen. Die Reaktion wurde nach folgendem Pipettierschema angesetzt:

Sense Oligonuklotide (zB. rSF-1A-s) 20µg
Antisense Oligonuklotid (zB. rSF-1A-as) 20µg
NaCl 180 mM
Wasser ad 40µl

Der Reaktionsansatz wurde für 5 min bei 96°C inkubiert. Dann wurde der Reaktionansatz ü.N. im Heizblock bis 37°C gekühlt.

2.20.4 Radioaktive Endmarkierung von DNA-Fragmenten

Theorie:
5'-Überhänge doppelsträngiger DNA-Fragmente können mit dem Klenow-Enzym in Anwesenheit von radioaktiv markiertem $\left[\alpha^{32}\text{P}\right]$dCTP aufgefüllt und damit markiert werden.

Material:
-1 mM dATP, dGTP, dTTP
-10x NEB2 Puffer
-$\left[\alpha^{32}\text{P}\right]$dCTP (Amersham Redivue; 3000 Ci/mmol)
-Klenow-Enzym (2 U/µl; Roche Mannheim)
-Nick™ Column Sephadex G-50 (Pharmacia)
Methode:
Als spezifische DNA-Bindungssequenz wurden entweder Insl3-Promotorfragmente, (206 bp, PCR Produkt mit Primerpaar Props3 /Pror1 für den Ratten- und Primerpaar mRLFss-SacI/mRLFaa-BglIII für den Maus Promotor) (Kapitel 2.6.2.2 und 2.6.3) oder doppelsträngige Oligonukleotide mit SF-1 Bindungsstellen (Kapitel 2.20.2) verwendet. Als Kontrolle wurde Human Oxytocin Hormon Response Element (hOT-HRE) aus dem menschlichen Oxytocin-Promotor, das eine gut charakterisierte SF-1 Bindungsstelle besitzt, verwendet (Stedronsky et al., 2002).

10 ng DNA-Fragmente wurden mit 2 µl dNTP´s, 1 µl Klenow-Enzym, 2 µl NEB2 Puffer, 1,5 µl [α-32P]dCTP und doppelt destilliertem Wasser ad 20 µl versetzt und 20 min bei Raumtemperatur inkubiert. Die Reaktion wurde mit 2 µl EDTA gestoppt. Es wurde eine Aufreinigung der markierten Sonde mit einer Sephadex-Säule vorgenommen, wobei das nicht eingebaute [α-32P]dCTP schneller von der Säule eluiert wird (Gelfiltration). Zuerst wurde die Sephadex Säule mit 3 ml TE-Puffer äquilibriert und anschließend die radioaktive Sonde auf die Gelmatrix aufgetragen. Dann wurden 2x 400 µl TE-Puffer über die Säule gegeben, die zweite Fraktion (markierte Sonde) gesammelt und 2 µl der Fraktion im Beta-Szintillationszähler gemessen. Die spezifische Aktivität lag meistens in einem Bereich von 2x10^6-9x10^6 cpm/pmol.

2.21 Immunhistochemie

Theorie:
Bei der Immunhistochemie wurden die gesuchten Proteine mit Antikörpern spezifisch und direkt auf Gewebeschnitten nachgewiesen. Es wurde eine enzymatische Farbreaktion verwendet, die darauf beruht, dass die Präparate nach der Inkubation mit dem spezifischen Antiserum, mit einem sekundären Biotin-markierten Antikörper und danach mit Peroxidase-gekoppeltem Streptavidin inkubiert werden. Durch Zugabe eines Substrates erfolgte eine Farbreaktion, so dass positive Zellen im mikroskopischen Bild gefärbt erscheinen.
Material:
Für die Schnittpräparate wurden ausschließlich Paraffinschnitte eingesetzt, die wie für die in situ-Hybridisierung beschrieben, präpariert wurden.
-Tris-Puffer (50 mM Tris-HCl, pH 7.6)

Methode:
Es wurde wie folgt vorgegangen:

<table>
<thead>
<tr>
<th>Vorgang</th>
<th>Lösung</th>
<th>Temperatur</th>
<th>Dauer</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entparaffinieren</td>
<td>Xylol</td>
<td>20°C</td>
<td>10 min</td>
<td>2x</td>
</tr>
<tr>
<td></td>
<td>Ethanol 96%</td>
<td>20°C</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol 70%</td>
<td>20°C</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>Unterdrückung</td>
<td>3% H₂O₂</td>
<td>20°C</td>
<td>45 min</td>
<td></td>
</tr>
<tr>
<td>endogener</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroxidaseaktivität</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waschen</td>
<td>Tris-Puffer</td>
<td>20°C</td>
<td>10 min</td>
<td>2x</td>
</tr>
<tr>
<td>Blockieren</td>
<td>10% Kaninchenserum in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tris-Puffer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Aurion BSA-C (0.5%)</td>
<td>20°C</td>
<td>60 min</td>
<td></td>
</tr>
<tr>
<td>Waschen</td>
<td>Tris-Puffer</td>
<td>20°C</td>
<td>10 min</td>
<td>3x</td>
</tr>
<tr>
<td>primärer Antikörper spezifischer erster Anti-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>körper in 1% Kaninchen-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>serum in Tris-Puffer</td>
<td></td>
<td>4°C</td>
<td>ü.N.</td>
<td></td>
</tr>
<tr>
<td>Waschen</td>
<td>Tris-Puffer</td>
<td>20°C</td>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>sekundärer</td>
<td>Biotin-markiertes</td>
<td>20°C</td>
<td>60 min</td>
<td></td>
</tr>
<tr>
<td>Antikörper</td>
<td>Anti-Ratte IgG aus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaninchen 1:500 in 0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaninchenserum in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tris-Puffer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waschen</td>
<td>Tris-Puffer</td>
<td>20°C</td>
<td>10 min</td>
<td>3x</td>
</tr>
<tr>
<td>PAP-Komplex</td>
<td>Peroxidase-Antiperoxidase 20°C</td>
<td>20°C</td>
<td>60 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aus Ratte in 0.5% Kaninchenserum in Tris-Puffer</td>
<td>20°C</td>
<td>60 min</td>
<td></td>
</tr>
<tr>
<td>Waschen</td>
<td>Tris-Puffer</td>
<td>20°C</td>
<td>10 min</td>
<td>3x</td>
</tr>
<tr>
<td>Material/Method</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sekundärer Biotin-markiertes Antikörper</td>
<td>Anti-Ratte IgG aus Kaninchen 1:500 in 0.5% Kaninchenserum in Tris-Puffer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAP-Komplex</td>
<td>Peroxidase-Antiperoxidase 20°C 60 min Aus Ratte in 0.5% Kaninchenserum in Tris-Puffer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC-Komplex</td>
<td>2 Tropfen Lösung A (Streptavidin) + 2 Tropfen Lösung B (biotinylierte HRP) in 10 ml Tris-Puffer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAB-Substratlösung</td>
<td>1 Tablette auf RT bringen, 20°C 30 min abstoppen in 10 ml Tris-Puffer aufnehmen, sterilfiltrieren, dann + 80 µl H₂O₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEC-Substratlösung</td>
<td>2 ml NaAc (0.1 M, pH 5.2) 20°C 30 min abstoppen in Wasser + 1 Tropfen AEC, mischen, + 1 Tropfen H₂O₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatoxylin-Färbung</td>
<td>Hämatoxylin 25°C 1 min Färbung der Zellkerne Eindeckeln in Faramount™</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Da die für den spezifischen Antikörper die optimale Antikörperkonzentration (minimale Hintergrundreaktion bei maximaler Signalstärke) bei jedem Gewebe neu bestimmt werden muss, wurden in der Regel mehrere Verdünnungen parallel untersucht (1:50 / 1:100 / 1:200 / 1:500 / 1:1000).
2.22 Liste der verwendeten Lösungen

LB Medium/Liter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypton</td>
<td>10 g</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>5 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>10 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>auf 1 l</td>
</tr>
</tbody>
</table>

pH auf 7.0 einstellen, autoklavieren.
Für Agar-Platten 15 g Agar hinzugeben.

10x PBS/Liter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>80 g</td>
</tr>
<tr>
<td>KCl</td>
<td>2 g</td>
</tr>
<tr>
<td>Na₂HPO₄•7H₂O</td>
<td>26.8 g</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>2.4 g</td>
</tr>
<tr>
<td>H₂O</td>
<td>auf 800 ml</td>
</tr>
</tbody>
</table>

pH auf 7.4 einstellen, dann mit H₂O auf 1 l auffüllen, autoklavieren.

50x TAE/Liter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-Base</td>
<td>2 M</td>
</tr>
<tr>
<td>Eisessig</td>
<td>57.1 ml</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.1 M</td>
</tr>
<tr>
<td>H₂O</td>
<td>auf 1 l</td>
</tr>
</tbody>
</table>

pH auf 8.5 einstellen, autoklavieren.

10x TBE/Liter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-Base</td>
<td>0.89 M</td>
</tr>
<tr>
<td>Borsäure</td>
<td>0.89 M</td>
</tr>
<tr>
<td>EDTA</td>
<td>20 mM</td>
</tr>
</tbody>
</table>

autoklavieren.

10x HTBE/Liter

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl</td>
<td>1.34 M</td>
</tr>
<tr>
<td>Borsäure</td>
<td>1.34 M</td>
</tr>
<tr>
<td>EDTA</td>
<td>20 mM</td>
</tr>
</tbody>
</table>

TE

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl, pH 7.0</td>
<td>10 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>1 mM</td>
</tr>
</tbody>
</table>

Denaturierungslösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1.5 M</td>
</tr>
<tr>
<td>NaOH</td>
<td>0.5 M</td>
</tr>
</tbody>
</table>

Neutralisierungslösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1.5 M</td>
</tr>
<tr>
<td>Tris-Base, pH 7.2</td>
<td>0.5 M</td>
</tr>
<tr>
<td>EDTA</td>
<td>1 mM</td>
</tr>
</tbody>
</table>

T4 Polynukleotidkinase-Puffer (10x)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl, pH 7.6</td>
<td>700 mM</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>100 mM</td>
</tr>
<tr>
<td>DTT</td>
<td>50 mM</td>
</tr>
</tbody>
</table>

dNTP-Mix

dATP, dTTP, dCTP, dGTP je 10 mM

Plasmid-Miniprep

Lösung 1

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-Base, pH 8.0</td>
<td>25 mM</td>
</tr>
<tr>
<td>Glucose</td>
<td>50 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>10 mM</td>
</tr>
<tr>
<td>RNase A</td>
<td>1 mg/ml</td>
</tr>
</tbody>
</table>

Lösung 2

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>0.2 M</td>
</tr>
<tr>
<td>SDS (w/v)</td>
<td>1 %</td>
</tr>
</tbody>
</table>

Lösung 3

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaliumacetat</td>
<td>3 M</td>
</tr>
<tr>
<td>Eisessig</td>
<td>11.5 %</td>
</tr>
</tbody>
</table>

EndoFree Plasmid-Maxiprep

Lösung P1

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-Base, pH 8.0</td>
<td>50 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>10 mM</td>
</tr>
<tr>
<td>RNase A</td>
<td>1 mg/ml</td>
</tr>
</tbody>
</table>

Lösung P2

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>0.2 M</td>
</tr>
<tr>
<td>SDS (w/v)</td>
<td>1 %</td>
</tr>
</tbody>
</table>

Lösung P3

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaliumacetat</td>
<td>3.1 M</td>
</tr>
</tbody>
</table>

Lösung ER

Zusammensetzung von QIAGEN nicht veröffentlicht.

Lösung QBT

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>0.75 M</td>
</tr>
<tr>
<td>MOPS</td>
<td>0.5 M</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>15%</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>0.15%</td>
</tr>
</tbody>
</table>

Lösung QC

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1.0 M</td>
</tr>
<tr>
<td>MOPS</td>
<td>0.5 M</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>15%</td>
</tr>
</tbody>
</table>
2 Material und Methoden

Lösung QN
- NaCl 1.6 M
- MOPS 0.5 M
- Isopropanol 15%

10x Ladepuffer
- Glycerin 50%
- Bromphenolblau 0.25%
- Xylenoyanol 0.25%

20x MOPS
- MOPS pH 7.0 0.2 M
- Natriumacetat 50 mM
- EDTA 10 mM

TSS
- PEG-8000 10% (w/v)
- DMSO 5% (w/v)
- MgSO4 50 mM
- in LB-Medium, pH 6.5

5x Ligase-Puffer
- Tris-HCl, pH 7.6 250 mM
- MgCl2 50 mM
- ATP 5 mM
- DTT 5 mM
- PEG-8000 25% (w/v) 7.5 g

10x Taq-PCR-Puffer
- Tris-Base, pH 8.75 0.2 M
- (NH4)2SO4 0.1 M
- MgSO4 20 mM
- Triton X-100 1%
- BSA 1 mg/ml

2.23 Firmenverzeichnis

AGS, Heidelberg
Amersham Pharmacia Biotech, Freiburg
Beckman, München
Clontech, San Diego, USA
Dako, Hamburg
Dianova, Hamburg
Eastman Kodak, Braunschweig
Fluka, Deisenhofen
Fuji, Düsseldorf
Genomed, Bethesda, USA
GibcoBRL, Eggenstein
Graph Pad Inc. San Diego, CA
Heraeus, Karlsruhe
Invitrogen, Leek, Niederlande
Macherey-Nagel, Düren
Merck, Darmstadt
Molecular Dynamics, Sunnyvale, USA
MWG, Ebersberg
New England Biolabs, Schwalbach

Qiagen, Hilden
Roche, Mannheim
Roth, Karlsruhe
Sarstedt, Nürnberg
Schott, Wertheim
Sigma, Deisenhofen
Stratagene, Heidelberg
3 Ergebnisse

3.1 Expression des INSL3-Proteins im Hoden der Ratte

3.1.1 Insl3-Analyse mittels RT-PCR

Um sehr geringe Mengen des Insl3-Transkripts zu erfassen, wurde die RT-PCR-Technik angewendet. Gesamt-RNAs wurden aus verschiedenen postnatalen Entwicklungsstadien der Ratte isoliert (Kap. 2.4) und in einzelsträngige cDNAs umgeschrieben (Kap. 2.5). Anschließend wurden in der RT-PCR einzelsträngige cDNAs als Template und die Ratten-spezifische Primer-Kombination rRLFEX1-1s und rRLF-3’ (Kap. 2.2) eingesetzt. Die Primer für diese PCR waren so ausgewählt, dass der Bereich beider Exons mit der Region der Spleißstelle amplifiziert wurde. Die PCR wurde unter folgenden Bedingungen durchgeführt:

1x (95°C 5 min.), 2x (95° 1 min, 61° 45 sec, 72° 3 min)
2x (95° 1 min, 59° 45 sec, 72° 3 min)
2x (95° 1 min, 57° 45 sec, 72° 3 min)
2x (95° 1 min, 55° 45 sec, 72° 3 min)
30x (95° 1 min, 53° 45 sec, 72° 3 min), 1x (72°C 1h), 25°

Die RT-PCR Analyse zeigte neben dem erwarteten PCR-Produkt (596 bp) überraschenderweise ein zweites, längeres Produkt (662 bp). Für eine weitere Charakterisierung wurden beide RT-PCR Produkte in den pGEM-T Easy-Vektor kloniert und sequenziert. Nach der Sequenzierung wurde das unbekannte PCR-Produkt als die cDNA einer Insl3-Spleißvariante identifiziert. In (Abb. 3.1-1) sind die Sequenzen der Insl3-cDNA und der cDNA der Insl3-Spleißvariante gegenübergestellt. Beide Insl3-Transkripte besitzen das gleiche Startkodon, aber unterschiedliche Stopkodons. Das Insl3-Transkript der alternativen Spleißvariante weist 100%ige Homologie in den DNA-Sequenzen des Signalpeptids und der B-Domäne des Insl3-Transkripts auf und kodiert dann für eine neue C-terminale Sequenz von 13 Aminosäuren (Abb. 3.1-1).
3. Ergebnisse

Abb. 3.1-1: Sequenz-Vergleich zwischen der Ratten Ins3-cDNA und der Spleißvariante. Gezeigt sind die 5'- und die 3'-nicht translatierte Region (UTR, Kleinbuchstaben), das offene Leseraster (ORF, Großbuchstaben), der Exon1/Exon2-Übergang (Pfeil), das Polyadenylierungs-Signal in der 3'-UTR (unterstrichen), die Translation in Aminosäuresequenzen mit der Angabe der einzelnen Abschnitte (Signalpeptid, B-Peptid, C-Peptid, A-Peptid) und die Stopkodons (Sterne). Die Rezeptorbindungsdomäne ist durch einen Rahmen markiert. Homologe Basen sind durch senkrechte Striche gekennzeichnet.

Abb. 3.1-2: Die RT-PCR-Analyse der Ratten Insl3-Transkripte in der RNA des ganzen Hodens aus verschiedenen postnatalen Entwicklungsstadien. Insl3-spezifische RT-PCR Produkte aus mRNA verschiedener postnataler Entwicklungsstadien der Ratte (Tag 1 bis Tag 60) wurden durch Agarose-Gelelektrophorese analysiert. Das 596bp PCR Produkt repräsentiert das funktionelle Transkript, das 662bp PCR Produkt die Spleiß-Variante. M: Größenmarker (100 bp-Leiter)

3.1.2 INSL3-Protein-Analyse mittels Immunhistochemie

Um das Insl3-Expressionsmuster in den Hoden von Wildtyp-Ratten auf Proteinebene zu untersuchen, wurden Schnitte aus verschiedenen postnatalen Entwicklungsstadien mit dem in Ratten hergestellten Antikörper R63 immunhistochemisch untersucht. Nur Leydigzellen, nicht aber andere Zell-Typen des Hodens, ließen sich anfärben. Der
Expressionsort für das gebildete Protein war eindeutig auf die Leydig-Zellen im Interstitium ab Tag 25 beschränkt. Zu den perinatalen Zeitpunkten (Tag 1 und Tag 5) waren im Gegensatz zur Insl3-mRNA keine Signale in allen testikulären Kompartimenten detektierbar (Abb. 3.1-3).

3. Ergebnisse

3.2 Insl3-Gen-Promotor der Ratte

Die genomische Organisation des Ratten-Insl3 ist, analog zum Maus- und Rind-Insl3-Gen, mit dem JAK3-Genlokus verbunden, denn das letzte Intron des JAK3-Gens beinhaltet die Region des Promotorbereichs des Insl3-Gens. Eine genauere Betrachtung dieses Sequenzabschnittes zeigte eine recht hohe Homologie zwischen der Ratten- und der Maus-Sequenz, hier finden sich auch putative Transkriptionsfaktor-Bindungsstellen für SF-1 (Koskimies et al., 1997; Spiess et al., 1999) (Abb. 3.2-1).

Abb. 3.2-1: Sequenz-Vergleich zwischen den Promotorregionen der Ratten- und Maus-Insl3-Gens. Dargestellt sind die zwischen Ratten- und Maus-Insl3-Promotor homologen Regionen (senkrechte Striche), die Entfernung vom Startkodon ATG (Nummerierung rechts) und die Lage putativer Bindungsstellen (unterstrichen) für Aktivierendes Protein 1 (AP-1), c-Jun Onkogen (c-Jun), T cell factor/lymphoid enhancer binding factor (TEF/LEF-1), Steroidogenic factor 1 (SF-1), Tumor suppressor protein 1 (Sp1) und T3 thyroid hormone receptor α (T3R). Die für die Transkription des Gens erforderliche TATA-Box ist mit einem Rahmen gekennzeichnet. Die Identifizierung putativer Transkriptionsfaktor-Bindungsstellen erfolgte mit dem Programm AliBaba 2.1 (www.iti.cs.uni-magdeburg.de/~grabe/alibaba2/webbaba3.cgi).

Beim Vergleich zwischen den Sequenzen der Insl3- Promotorregionen von Ratte und Mensch gibt es außer in der proximalen Promotorregion kaum signifikante Ähnlichkeiten, selbst diese Homologien werden nicht von allen Programmen zum Sequenzvergleich,
sondern nur durch das Programm Dialign2 gefunden. Außer der TATA-Box und der ersten SF-1 Bindungsstelle sind keine Bindungsstellen direkt konserviert. Die Bindungstelle für TCF/LEF-1 (involviert im Wnt-Signalübertragungsweg) ist auch nicht direkt konserviert, befindet sich aber in einer Region mit hoher Konservierung. Allerdings liegt diese kleine Region in beiden Promotoren an völlig unterschiedlichen Stellen (Abb. 3.2-2).

A)

TCF/LEF-1 (+)

<table>
<thead>
<tr>
<th>Humaner Insl3-Promotor</th>
<th>-2359</th>
<th>CAACCTCAGATTCCCTCCTTTGGAAAAACAAAGCTATAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratten Insl3-Promotor</td>
<td>-357</td>
<td>CAGCCTCAGTTTTCCTCTTTTGAACAAAACCAAGTATAA</td>
</tr>
</tbody>
</table>

TCF/LEF-1 (-)

<table>
<thead>
<tr>
<th>Humaner Insl3-Promotor</th>
<th>-1961</th>
<th>ATTCTCCTGCCTCACG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratten Insl3-Promotor</td>
<td>-269</td>
<td>ATTCTCCTGCCTCACG</td>
</tr>
</tbody>
</table>

B)

<table>
<thead>
<tr>
<th>Humaner Insl3-Promotor</th>
<th>-188</th>
<th>-----GACTCGTTGCCCCAGTGCTCTCTCGGGAAGAAGTACATCAaacggcc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratten Insl3-Promotor</td>
<td>-183</td>
<td>gggcGACTCTGGCAGCAGAGTGCACCTGGGAGAGGACTTCagggtcc</td>
</tr>
</tbody>
</table>

SF-1

<table>
<thead>
<tr>
<th>Humaner Insl3-Promotor</th>
<th>-163</th>
<th>tggccctggAGAAAAGGCTCTGGCAACTAACCACCCTCTGCTGGCACGACCTTcttccc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratten Insl3-Promotor</td>
<td>-154</td>
<td>aagctggag-ACACAGCCCTGACCCTGACTGAGCCTGACCTACCTtcctgg</td>
</tr>
</tbody>
</table>

Sp1

<table>
<thead>
<tr>
<th>Humaner Insl3-Promotor</th>
<th>-113</th>
<th>tggccggtctcgaagaatgttgtgctctTCCTCAAAGGCGCcagcTGGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratten Insl3-Promotor</td>
<td>-105</td>
<td>tgtctgctgctgtgcttcc-------------CTCCAAGGCCCa------TGGG</td>
</tr>
</tbody>
</table>

SF-1

<table>
<thead>
<tr>
<th>Humaner Insl3-Promotor</th>
<th>-63</th>
<th>ACGGCCCGAGGCCGCCCTATAAGGGGGTCCcgccttgccccgggg------</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratten Insl3-Promotor</td>
<td>-50</td>
<td>CGGCAGCAAGCCGCGCTATAGGGAGGGTCCTacccgctgctcccctgccacc</td>
</tr>
</tbody>
</table>

C)

TATA-Box

<table>
<thead>
<tr>
<th>Humaner Insl3-Promotor</th>
<th>-63</th>
<th>ACGGCCCGAGGCCGCCCTATAAGGGGGTCCcgccttgccccgggg------</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratten Insl3-Promotor</td>
<td>-50</td>
<td>CGGCAGCAAGCCGCGCTATAGGGAGGGTCCTacccgctgctcccctgccacc</td>
</tr>
</tbody>
</table>

3.2.1 Klonierung und Sequenzierung des Insl3-Genlokus

Für die Klonierung der kodierenden Insl3-Region wurde der Insl3-Genlokus (Promoter + kodierende Region) aus der genomischen DNA der Ratte mittels PCR mit Hilfe der Primer-Kombination rJAK3-X23 und rRLF-3´ (Kap. 2.2) amplifiziert (Kap. 2.6.2.1). Der Reaktionsansatz wurde elektrophoretisch aufgetrennt und das Produkt in Form eines Agaroseblöckchens herausgeschnitten und mit Hilfe des Gelextraktionkits Qiaex eluiert (Kap. 2.8). Die so gewonnene DNA wurde in den Vektor pGEM-Teasy hineinligiert (Kap. 2.10). Dieser Vektor war EcoRI-geschnitten und mit Hilfe von alkalischer Phosphatase dephosphoryliert worden, um eine Selbstligation zu verhindern. Die Ligationreaktion wurde von dem Enzym T4-DNA-Ligase katalysiert. Die Transformation der Ligationsprodukte erfolgte in E. coli DH5 alpha (Kap. 2.12). Es wurden Einzelklone isoliert, sowie Plasmid- DNA präpariert (Kap. 2.13) und sequenziert (Kap. 2.15), wodurch die Nukleotidsequenz des Insl3-Genlokus überprüft wurde.

3.2.2 Herstellung von Deletionskonstrukten vom Ratten-Insl3-Promotor durch PCR

Die 5´-nicht kodierende Region des Ratten-Insl3-Gens, das im letzten Intron des JAK3-Gens lokalisiert ist, hat 3 Bindungsstellen für SF-1.

Zuerst wurde durch eine PCR mit genomischer DNA, wie in (Kap. 2.6.2.1) beschrieben, das Insl3-Gen der Ratte amplifiziert. Für die Herstellung von Ratten-Promotor-Deletionskonstrukten wurde eine PCR mit dem amplifizierten Ratten Insl3-Gen und Primer ProPs1-ProPs7 als 5´-Primer und Propr1 als 3´-Primer, wie in (Kap. 2.6.1) beschrieben, unter folgenden Bedingungen durchgeführt:

95°C 5 min; 2 x (95°C 30 sec / 67°C 30 sec / 72°C 1 min)
2 x (95°C 30 sec / 65°C 30 sec / 72°C 1 min)
2 x (95°C 30 sec / 65°C 30 sec / 72°C 1 min)
2 x (95°C 30 sec / 65°C 30 sec / 72°C 1 min)
30 x (95°C 30 sec / 65°C 30 sec/ 72°C 1 min); 72°C 5 min; 10°C ∞.
Hierbei enthielten die Primer jeweils eine Restriktionsschnittstelle für XhoI. Diese Schnittstelle kommt nicht in der kodierenden Region des InSl3-Promotors vor. Die Möglichkeit, das PCR-Produkt an den Enden mit XhoI spalten zu können, war für die Ligation des Inserts in den Transfevektor nützlich. In Abb. 3.2.2-1 ist dies schematisch dargestellt.

<table>
<thead>
<tr>
<th>5’-Primer</th>
<th>XhoI</th>
<th>Insl3-Promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Props 1: 5’-taatgc ctcgag ctcggtctgctgctggtt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Props 2: 5’-taatgc ctcgag tggacacagccccctgac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Props 3: 5’-taatgc ctcgag cttgcttggtaaatgtggttggttggg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Props 4: 5’-taatgc ctcgag tttaactgtgacagactgtc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Props 5: 5’-taatgc ctcgag gctcttccagctcagtttccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Props 6: 5’-taatgc ctcgag ttaataagtgaccccaagggc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Props 7: 5’-taatgc ctcgag ccaagggagcagactatag</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 3.2.2-1: Amplifikation verschieden langer Bereiche des Insl3-Promotors zur Herstellung von Deletionskonstrukten durch Insertion in den Reportervektor pGL3-Luciferase. Die 5’- und 3’-Primer für die Amplifikation der Insl3-Promotor-Regionen wurden so konstruiert, dass sie jeweils mit ihrem 3’-Ende zur Insl3-Promotor-Sequenz komplementär waren, jedoch an ihrem 5’-Ende XhoI- Schnittstellen enthielten, mit Hilfe derer sie später in den Reportervektor eingefügt werden konnten.

Die PCR-Fragmente wurden aus dem Gel eluiert, in den pGEM-T-Easy-Vektor kloniert und anschließend sequenziert, um einen eventuell falschen Nukleotideinbau während der PCR-Reaktion auszuschließen. Danach wurden sowohl die Plasmide mit den Insl3-Promotor-Inserts als auch der Reportervektor pGL3-Luciferase mit dem Restriktionsenzym XhoI behandelt. Aliquots der anschließenden Ligationen (Kap. 2.10) wurden in E.coli DH5 alpha (Kap. 2.12) transfiziert, die Plasmid-DNA präpariert (Kap. 2.13) und sequenziert (Kap.2.15), wodurch die Orientierung der InSl3-Promotor-Konstrukte überprüft wurde.

3. Ergebnisse
3. Ergebnisse

Abb. 3.2.2-2: Schematische Organisation des Ratten-InsI3-Gens. Im rechten Teil der Abbildung ist die Exon/Intron-Struktur des Ratten-InsI3-Gens sowie die mRNA und das C-terminale Ende der translatierten Aminosäuresequenz der Splicingvariante (splice variant) dargestellt. Der zur Charakterisierung der mRNA amplifizierte Bereich (RT-PCR) ist durch den Doppelpfeil gekennzeichnet. Im linken Teil der Abbildung sind die relativen Positionen der Promotor-Deletionen (Abstände zum Translationsstart) und die darin enthaltenen putativen SF-1 Bindungsstellen (Ovale) dargestellt.

Als Kontrolle wurde das –188bp Fragment des InsI3-Gens der Maus (Koskimies et al., 2002) durch eine PCR aus der genomischen DNA der Maus mit Hilfe der Primer-Kombination mRLFss-SacI and mRLFaa-BglII (Tabelle 1) (Kap. 2.2) amplifiziert.

3.3 Bestimmung der Progesteron-Konzentration mittels ELISA

Um zu zeigen, dass die Fähigkeit der Zellen zur Steroid-Produktion vorhanden war, wurde ein Progesteron-ELISA (Enzyme-linked immuno-sorbent assay) durchgeführt. Der Test mit R2C-Zellen zeigte, dass in dieser Zelllinie Progesteron in hoher Menge produziert wird. Die Progesteron-Produktion ist abhängig von der Expression von endogenem SF-1. In Transfektionsexperimenten (s.u.) wurde allerdings eine Steigerung der InsI3-Promotoraktivität durch Kotransfektion von SF-1 festgestellt. Da in diesen Experimenten sehr große Menge Promotor-DNA transfiziert wurden, war die Menge an endogenem SF-1, die zur Stimulation der Progesteron-Produktion genügte, offensichtlich nicht ausreichend für die volle Stimulation des transfizierten Promotors.
3.4 Funktionalität des Ratten-InsI3-Promotors

3.4.1 Aktivierungsfähigkeit der InsI3-Gen-Promotorkonstrukte in transienten Transfektionen

3. Ergebnisse

Abb. 3.4-1: Transfektions-Analyse der Ratten-InsI3-Promotor-Deletions-Konstrukte. Ratten-InsI3-Promotor-Deletions-Konstrukte mit 89 bp, 366 bp oder 1466 bp Promotorsequenzen wurden in R2C-Zellen (graue Säulen), MA-10-Zellen (schwarze Säulen) oder COS-7-Zellen (weiße Säulen) transfiziert und die exprimierte Aktivität des Reportergens Luciferase bestimmt. Kotransfektion mit dem SF-1 Expressionsvektor ist angezeigt (+). Als Kontrolle diente pGL3B, der Ausgangsvektor, der keinen Promotor enthält. Die Promotoraktivität ist als relative Steigerung gegenüber der Kontrolle dargestellt.

Alle sieben Promotorkonstrukte der Ratte wurden in MA-10 Zellen einmal ohne SF-1 Expressions-Vektor und einmal mit SF-1 Expressions-Vektor transfiziert und die Reportergen-Aktivität untersucht. Unsere Daten zeigen, dass von den drei kurzen Promotor-Konstrukten, im Gegensatz zu den beschriebenen Ergebnissen mit dem Maus-InsI3-Promotor (Koskimies et al., 2002), bei der Ratte dasjenige Konstrukt (-130) mit zwei SF-1-Bindungsstellen am aktivsten war (Abb. 3.4-2).

Auch ohne SF-1 Kotransfektion ist der Ratten-InsL3-Promoter in endogen SF-1 experimentierenden Zelllinien basal aktiv, aber nicht in dem Maße, in dem ein bekanntes SF-1-geregeltes Gen wie z.B. das Oxytocin-Gen aktiv ist.
3.4.2 „electrophoretic mobility shift assay“ (EMSA)

Nachdem unsere Daten unterschiedliche Ergebnisse zu den beschriebenen Ergebnissen mit dem Maus-InsI3-Promotor zeigten, sollten die SF-1 Bindungsstellen und ihre Affinitäten zu SF-1 im Promotor der Ratte mit deren Affinität in der Maus im „electrophoretic mobility shift assay“ (EMSA) verglichen werden.

Für EMSA-Untersuchungen, also die Untersuchung, ob Proteine aus nukleären Extrakten in der Lage sind, spezifische cis-Elemente in unseren Promotor-Sequenzen zu binden, wurden nukläre Extrakte von R2C und MA-10 Zellen, die endogenes SF-1 exprimieren, zusammen mit drei SF-1 Bindungs-Sequenzen (A, B und C) aus dem Maus und dem Ratten InsI3-Promotor inkubiert. BSA wurde als Kontrolle für unspezifische DNA-Protein-Interaktionen eingesetzt.
3.4.2.1 Kompetitionsexperiment mit Bindungssequenzen für den Transkriptionsfaktor SF-1

Für dieses EMSA-Experiment wurden als DNA-Sonden die drei SF-1 Bindungssequenzen (A, B und C) aus dem Maus- und dem Ratten-InsI3-Promotor als doppelsträngige Oligonuklotide radioaktiv markiert. Proteinextrakte von MA-10 Zellen wurden mit gleichen Mengen an Sonde inkubiert. Spezifisch kompetitiert wurde die Bindung mit einem SF-1 Konsensus-Oligonuklotid (Abb. 3.4-3).

Bei der Maus wurden alle drei Bindungssequenzen gebunden, wobei die distale C-Stelle die stärkste Bindung zeigt. In der Ratte wurden ebenfalls alle drei Bindungssequenzen gebunden, aber hier wurde die proximale A-Stelle am stärksten gebunden.

Abb. 3.4-3: „Electrophoretic-mobility shift assay“ (EMSA) Analyse der Bindung von Maus MA-10 Kernproteinen an die SF-1 Bindungsstellen aus dem InsI3-Promotor. Die drei individuellen putativen SF-1 Bindungsstellen (SF-1 A, SF-1 B und SF-1 C) aus dem InsI3-Promotor der Maus (linke Tafel) oder der Ratte (rechte Tafel) wurden als radioaktiv markierte Sonden in EMSA-Assays mit Kernextrakt aus MA-10-Zellen eingesetzt. Jede Tafel repräsentiert ein Experiment, wobei die Spuren des Autoradiogramms zum direkten Vergleich der drei Sonden neu zusammengefügt worden sind. Die Zugabe von Kernextrakt und/oder dem spezifischen Kompetitor (Oligonukletid mit einer Konsensus-Bindungsstelle für SF-1) zu den einzelnen Bindungsreaktionen ist oberhalb der Gelspuren angezeigt (+). Der spezifische Komplex der Sonden mit SF-1 ist durch die Pfeilspitze markiert.
In diesem EMSA wurden Kernextrakte aus Maus MA-10 und Ratten R2C Zellen jeweils mit zwei Promotorabschnitten von 206bp Länge aus den Ratten-Insl3 und dem Maus-Insl3 Promotor als Sonde inkubiert. Kompetiert wurde in beiden Fällen einmal mit ungelabeltem SF-1-Konsensus Oligonukleotid, der ungelabelten Gesamtsonde, sowie mit den jeweiligen Bindungssequenzen A bis C aus Maus und Ratte (Abb. 3.4-4).

Die Bindungsaffinität für SF-1 ist beim Ratten Insl3-Promotor schwächer als beim Maus Insl3-Promotor. Dieses Muster ist eine Qualität des Promotors, denn das Bindungsmuster ändert sich nicht in einem heterologen System (Ratten Insl3-Promotor mit Maus-Kernextrakten).

Abb. 3.4-4: „Electrophoretic-mobility shift assay“ (EMSA) Analyse von Maus MA-10-Kernextrakten und Ratten R2C-Kernextrakten. 206bp große proximale Promotor-Fragmente von den Insl3 Genen der Ratte (Ratten RLF pr.) und der Maus (Maus RLF pr.) wurden als radioaktiv markierte Sonden in EMSA-Assays mit MA-10-Kernextrakt (linke Tafel) und R2C-Kernextrakt (rechte Tafel) eingesetzt. Doppelsträngige Oligonukleotide der einzelnen Maus- (mSF-1/A bis –C) oder Ratten-(rSF-1/A bis C) SF-1 Elemente, die 206bp große proximalen Promotor- Bereiche, sowie eine Konsensus-Bindungsstelle für SF-1 (SF1-Oligo) wurden als spezifische Kompetitoren verwendet. Die Zugabe von Kompetitoren zu den einzelnen Bindungsreaktionen ist oberhalb der Gelspuren angezeigt (+).
3.4.2.3 Immunologische Charakterisierung der Protein-DNA-Komplexe

Die Spezifität der Protein-Komplexe wurde durch Einsatz eines Antikörpers gegen SF-1 (bovines SF-1 Homolog Ad4BP, Morohashi et al., 1992) bestätigt (Abb. 3.4-5). Diese Kontroll-Untersuchung zeigt komplette Blockierung der Bildung des spezifischen Protein-DNA-Komplexes durch diesen spezifischen SF-1 Antikörper.

3.5 Stimulation der MA-10 Zellen mit Dexamethason

Vorhergehende Versuche ließen vermuten, dass das Insl3-Gen durch Glukokortikoide aufgeregt werden könnte. Um diese Ergebnisse in dem hier verwendeten Zellkultursystem zu bestätigen, wurden nach dem Absaugen der Transfektionslösung den Zellen 10^{-7} M Dexamethason oder Kontrollvehikel zugesetzt und die Zellen über Nacht inkubiert. Entgegen den Erwartungen konnte keine Aufregelung der Insl3-Expression durch Dexamethason nachgewiesen werden (Abb. 3.5-1).

![Graph](image)

Abb. 3.5-1: Untersuchung der möglichen Wirkung von Dexamethason auf die Aktivität des Ratten-Insl3-Promoters. Ratten-Insl3-Promotor-Deletions-Konstrukte mit den angegebenen Längen von Promotorsequenzen wurden in MA-10-Zellen transfiziert und die exprimierte Aktivität des Reportergens Luciferase bestimmt. Als Kontrolle für die Transfektion dienten pGL3B (der Ausgangsvektor, der keinen Promoter enthält) und pGL3C (Kontrollvektor, der einen konstitutiven Viren-Promoter enthält). Der Maus-Insl3-Promotor (Maus) wurde zum Vergleich eingesetzt. Stimulation mit Dexamethason (10^{-7} M) ist angezeigt (+).

Des Weiteren wurde bei den unstimulierten und den mit Dexamethason stimulierten MA-10 Zellen die Expression von Insl3 mittels RT-PCR (Kap. 2-5) untersucht. Nach der Stimulation mit Dexamethason wurde nur eine Bande in Höhe der Insl3-Spleißvariante mit
der Größe von 662bp, aber nicht die 596 bp Bande des normalen Transkripts nachgewiesen. (Abb. 3.5-2).

4 Diskussion

sich auch als Exon 23B in manchen Formen der Jak3-cDNA (Spiess et al., 1999). Die Jak3-mRNA und die InsI3-mRNA entstehen also aus der Benutzung derselben Akzeptor-Spleißstelle. Obwohl das InsI3-Gen offensichtlich von einem unabhängigen Promotor transkribiert wird, werden bei der Wahl der mRNA-Stop-Stelle des InsI3- und Jak3-Gens verschiedene 3'-Polyadenylierungssignale innerhalb derselben 3'-UTR verwendet. Vielleicht wegen dieser Voraussetzung in diesem genomischen Gebiet, gibt es auch die Spleiß-Variante innerhalb der InsI3 pre-mRNA. Die Spleiß-Variante der Ratte, die hier beschrieben ist, ist das Ergebnis alternativen Spleißens an der ersten Exon-Akzeptor-Stelle. Obwohl die Details der Spleiß-Ereignisse und die daraus resultierenden Folgen für die Translation verschieden sind, wird alternatives Spleißen an derselben Stelle auch bei Maus, Hund, Mensch und Weißbuschelaffe beobachtet (Ivell et al., 2001).

Das alternative Spleißen führt zur Einführung zweier Stopkodons. Das resultierende Protein würde aus dem B-Peptid, einem kleineren Teil des C-Peptids und einem neuen C-Terminus bestehen. Die Struktur der InsI3-Spleißvariante weist neben dem Signalpeptid eine B-Kette auf, welche am C-Terminus um 13 Aminosäuren verlängert wurde. Von einer ähnlichen alternativen Spleißvariante wird bei dem verwandten Hormon RLX in der humanen Plazenta berichtet (Gunnersen et al., 1996). Auch hier beinhaltet das Produkt eine am C-Terminus verlängerte B-Kette. Es ist nicht bekannt, ob die Spleiß-Variante der Ratte wirklich ein Protein erzeugt, das eine biologische Bedeutung hat und ob das funktionell relevant sein kann. Es scheint jedoch, dass RLX- oder InsI3-Varianten mit solchen verlängerten B-Peptiden aufgrund des vorhandenen einheitlichen Motivs der Rezeptorbindungsstelle in der B-Kette mit RLX- oder InsI3-Rezeptoren interagieren können. Interessanterweise wurde kürzlich gezeigt, dass ein chemisch synthetisches Peptid, basierend auf der Sequenz des Schaf-INSL3, einen antagonistischen Effekt am LGR8 Rezeptor für INSL3 ausüben kann (Del Borgo et al., 2004). Antikörper gegen eine ähnliche Variante des Weißbuschelaffen-INSL3-Proteins, konnten keine immunogenen Epitope für die neuartige Sequenz im Weißbuschelaffen-Hoden zu entdecken (Zarreh-Hoshyari-Khah et al., 1999).

Im zweiten Teil der Arbeit wurde aus einer genomischen Bibliothek bzw. genomischer DNA mittels einer Polymerasenkettenreaktion (PCR) der InsI3-Promotorbereich isoliert und zur Herstellung von Ratten-Promotor-Deletionskonstrukten verwendet.
Im dritten Teil der Arbeit wurde dann mittels Transfektionsanalyse die Funktionsfähigkeit der Promotorkonstrukte in Leydig-Zelllinien untersucht. Die in Vorversuchen getesteten MA-10 Zellen erwiesen sich im Vergleich zu R2C Zellen als besser geeignet, deswegen wurden MA-10 Zellen für die Transfektionsexperimente verwendet. Die Transfektion aller sieben Promotorkonstrukte der Ratte in MA-10 Zellen zeigten, dass von den drei kurzen Promotor-Konstrukten, im Gegensatz zu den beschriebenen Ergebnissen mit dem Maus-Insl3-Promotor (Koskimies et al., 2002), bei der Ratte dasjenige Konstrukt (-130) mit zwei SF-1-Bindungsstellen am aktivsten war.

Die Bindungsaffinität für SF-1 ist beim Ratten Insl3 Promotor schwächer als beim Maus Insl3-Promotor. Dieses Muster ist eine Qualität des Promoters und ändert sich nicht in einem heterologen System (Ratten Insl3-Promotor mit Maus-Kernextrakten). Möglicherweise wirken andere Transkriptionsfaktoren oder Kofaktoren synergistisch auf die Bindung von SF-1.

Der genaue Wirkmechanismus von SF-1 ist noch für kein Gen geklärt und, wie oben erwähnt, wird eine Modulierung seiner Funktion durch Kofaktoren, noch nicht identifizierte Liganden oder auch posttranslationale Modifikationen diskutiert (Sadovsky et al., 1998).
Denn während SF-1 einerseits von der Mitte der Trächtigkeit an in allen Leydig- und Follikelzellen der Ratte identifiziert werden konnte (Majdic und Saunders, 1996), findet es sich zum Beispiel auch in großen Mengen in der Nebennierenrinde der Ratte, in der jedoch keinerlei Insl3-Expression stattfindet (Parker, 1998). Somit muss es weitere Faktoren geben, die die Insl3-Expression in manchen Geweben supprimieren, in anderen Geweben wie reifen Leydigzellen, Theka interna- und Lutealzellen hingegen aktivieren. Es kann davon ausgegangen werden, dass SF-1 alleine nicht ausreichend für die Expression der Gene ist, sondern andere Faktoren und Kofaktoren benötigt, um die Expression zu aktivieren. SF-1 kann daher wahrscheinlich nur eine permissive Vermittlerrolle zugesprochen werden. So werden möglicherweise an den im Insl3-Promotorbereich identifizierten SF-1-Bindungsstellen Kofaktoren durch SF-1 rekrutiert, die die Expression des Insl3-Gens modulieren.

Es wurde gezeigt, dass eine breite Reihe von Effekto ren, z.B. Estradiol, in primären Zellen oder Zelllinien (Balvers et al., 1998), einschließlich auch der R2C Zelllinie der Ratte (Sadeghian et al., 2005), keinerlei Einfluss auf die Insl3-Gen-Transkription haben. Die Transkription des Insl3-Gens ist, mindestens hinsichtlich der Reihe von geprüften Effektor en, konstitutiv. Eine frühere Studie hatte gezeigt, dass auch Testosteron ohne Wirkung auf die Insl3-Transkription ist (Balvers et al., 1998).

Insl3-Spleißvariante der Ratte notwendig, um einen möglichen Zusammenhang zwischen Dexamethason und Kryptorchidismus beim Menschen aufzuklären.

Es war ein interessanter Befund, dass Estradiol keine akute Wirkung auf die Insl3-Expression in MA-10 Zellen hat (Sadeghian et al., 2005), da die Behandlung von Mutter-Ratten mit Estrogen im dritten Trimenon zu einer drastischen Verminderung der fotalen Insl3-mRNA im Hoden, und zu Kryptorchidismus führt (Emmen et al., 2000). Dieser Zusammenhang bestätigt, dass die Insl3-Expression indirekt durch die Störung der
5 Zusammenfassung

6 Anhang

6.1 Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenin</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonsäure (arachidonic acid)</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AC</td>
<td>Adenylatzyklase (adenylate cyclase)</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropes Hormon</td>
</tr>
<tr>
<td>ad.</td>
<td>adult</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-5´-triphosphat</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserum-Albumin (bovine serum albumin)</td>
</tr>
<tr>
<td>C</td>
<td>Cytoxin</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>cAMP</td>
<td>zyklisches (cyclic) Adenosin-3´,5´-monophosphat</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre DNA (complementary DNA)</td>
</tr>
<tr>
<td>cGMP</td>
<td>zyklisches (cyclic) Guanosin-3´,5´-monophosphat</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>cpm</td>
<td>Zählereignisse pro Minute (counts per minute)</td>
</tr>
<tr>
<td>cRNA</td>
<td>komplementäre RNA (complementary RNA)</td>
</tr>
<tr>
<td>C-Terminus</td>
<td>C-Terminus</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxyadenosin-5´-triphosphat</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxyctydin-5´-triphosphat</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>dGTP</td>
<td>Desoxyguanosin-5´-triphosphat</td>
</tr>
<tr>
<td>DHT</td>
<td>Dihydrotestosteron</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco´s modified of Eagle´s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure (deoxyribonucleic acid)</td>
</tr>
<tr>
<td>DNase I</td>
<td>Desoxyribonuclease I</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleotid-5´-triphosphat</td>
</tr>
<tr>
<td>ds</td>
<td>doppelsträngig</td>
</tr>
<tr>
<td>DSO</td>
<td>doppelsträngiges Oligonukleotid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>dTTP</td>
<td>Desoxythymidin-5´-triphosphat</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDS</td>
<td>Ethylenedimethansulfonat</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraacetat</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidiumbromid</td>
</tr>
<tr>
<td>f.c.</td>
<td>Endkonzentration (final concentration)</td>
</tr>
<tr>
<td>FCS</td>
<td>Fötales Kälberserum (fetal calf serum)</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikel-stimulierendes Hormon</td>
</tr>
<tr>
<td>G</td>
<td>Guanosin</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glycerinaldehydephoshat-Dehydrogenase</td>
</tr>
<tr>
<td>GC</td>
<td>Guanylatzyklase (guanylate cyclase)</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropin-freisetzendes Hormon (gonadotropin releasing hormone)</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosin-5´-triphosphat</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>hCG</td>
<td>humanes Choriogonadotropin</td>
</tr>
<tr>
<td>HEPES</td>
<td>Hydroxyethylpipеразинэтансульфат</td>
</tr>
<tr>
<td>HPG-Achse</td>
<td>Hypothalamo-hypophysär-gonadale Achse (hypothalamic-pituatary-gonadal axis)</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-ähnlicher Wachstumsfaktor (insulin growth factor)</td>
</tr>
<tr>
<td>INSL3</td>
<td>Insulin-ähnlicher Faktor 3 (insulin-like factor 3)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>IP₃</td>
<td>Inositol-1,3,5,-triphosphat</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-Galactopyranosid</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen (RNA), Kilo- (\text{basenpaare (DNA)})</td>
</tr>
<tr>
<td>KD</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertami</td>
</tr>
<tr>
<td>Ley-IL</td>
<td>Leydigzell-spezifischer Insulin-ähnlicher Faktor</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinisierendes Hormon</td>
</tr>
<tr>
<td>LH-R</td>
<td>LH-Rezeptor</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MA-10</td>
<td>Maus-Leydig-Zelllinie</td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
</tr>
<tr>
<td>mCi</td>
<td>Millicurie</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple Klonierungsstelle (multiple cloning site)</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>MOPS</td>
<td>Morpholinopropansulfonsäure</td>
</tr>
<tr>
<td>mRNA</td>
<td>Boten-RNA (messenger RNA)</td>
</tr>
<tr>
<td>MW</td>
<td>Molekulargewicht (molecular weight)</td>
</tr>
<tr>
<td>n</td>
<td>Stoffmenge</td>
</tr>
<tr>
<td>NaAc</td>
<td>Natriumacetat</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>nt</td>
<td>Nukleotide</td>
</tr>
<tr>
<td>N-terminus</td>
<td>Amino-Terminus</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>OLB</td>
<td>Oligonukleotid-Markierungspuffer (Oligo labeling buffer)</td>
</tr>
<tr>
<td>ORF</td>
<td>Offener Leserahmen (open reading frame)</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamid-Gelelektrophorese</td>
</tr>
<tr>
<td>PAP</td>
<td>Peroxidase-Anti-Peroxidase</td>
</tr>
<tr>
<td>pBS</td>
<td>Plasmid Bluescript</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat-gepufferte Salzlösung (phosphate-buffered saline)</td>
</tr>
<tr>
<td>p.c.</td>
<td>postcoitum</td>
</tr>
<tr>
<td>PC</td>
<td>Computer (personal computer)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion (polymerase chain reaction)</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrogenanion-Exponent (potentia hydrogenii)</td>
</tr>
<tr>
<td>PK(A,C)</td>
<td>Proteinkinase A,C</td>
</tr>
<tr>
<td>PLA₂</td>
<td>Phospholipase A₂</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonylflorid</td>
</tr>
<tr>
<td>p.n.</td>
<td>postnatum</td>
</tr>
<tr>
<td>POL</td>
<td>Polymerase</td>
</tr>
<tr>
<td>Poly-A⁺RNA</td>
<td>polyadenylierte RNA</td>
</tr>
<tr>
<td>RACE</td>
<td>Rapid Amplification of cDNA Ends</td>
</tr>
<tr>
<td>RLF</td>
<td>Relaxin-ähnlicher Faktor (relaxin-like factor)</td>
</tr>
<tr>
<td>RLX</td>
<td>Relaxin</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>RLU</td>
<td>relative Licht-Einheit (relative light unit)</td>
</tr>
<tr>
<td>rpm</td>
<td>Umdrehungen pro Minute (rotations per minute)</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>PCR nach reverser Transkription der mRNA in cDNA</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodeylsulphat (sodium dodecyl sulfate)</td>
</tr>
<tr>
<td>SF-1</td>
<td>steroidogen Faktor-1 (steroidogenic factor-1)</td>
</tr>
<tr>
<td>sog.</td>
<td>sogenannt(e)</td>
</tr>
<tr>
<td>StAR</td>
<td>steroid acute regulatory protein</td>
</tr>
<tr>
<td>T</td>
<td>Thymidin</td>
</tr>
<tr>
<td>Tₘ</td>
<td>Schmelztemperatur</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-EDTA-Puffer</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat-EDTA-Puffer</td>
</tr>
</tbody>
</table>
TCA Trichloressigsäure (trichloroacetic acid)
TE Tris-EDTA-Puffer
TdT Terminale Deoxinkleotid-Transferase
TEMED N,N,N´,N´-Tetramethylethylenediamin
N-Terminus Amino-Terminus
C-Terminus Carboxy-Terminus
Tris Tris(hydroxymethyl)aminomethan
U Einheit (unit)
ü.N. über Nacht
UTR untranslatierte Region
UV Ultraviolett
V Volt
Vol. Volumen
(v/v) Volumen/Volumen
(w/v) Masse/Volumen
(w/w) Masse/Masse
X-Gal 5-Bromo-4-chloro-3-indolyl-β-D-Galactopyranosid
∑ Summe

6.2 Glossar

annealing Anlagerung eines Primers an sein Template (engl.)
antsense-Strang zu der mRNA komplementäre DNA-Strang (engl.)
antsense-Primer der Sequenz des antisense-Stranges entsprechender Primer (engl.)
Assay Test/Untersuchung (engl.)
Beads Kügelchen (engl.)
blotten Übertragen von DNA/RNA/Protein auf Membranen
blunt ends nicht überhängende (glatte) Enden eines dsDNA-Fragmentes nach Restriktionsverdau oder PCR mit den entsprechenden Enzymen (engl.)
Cluster Haufen (engl.)
Colony Bakterienkolonie (engl.)
Consensus Übereinstimmung (lat.)
Contig die Angrenzung (engl.)
Dezensus Senkung (lat.)
Elongation Verlängerung von DNA mittels Polymerasen (lat.)
EST ansequenzierte cDNAs, expressed sequence tags (engl.)
heat shock-Proteine Proteine, welche andere Proteine in ihrer Konformation stabilisieren (engl.)
Insert in einen Plasmidvektor einkloniertes dsDNA-Fragment (engl.)
knock-out gezieltes Ausschalten eines Gens durch homologe Rekombination (engl.)
mismatch ungepaarte Basen in einer doppelsträngigen DNA (engl.)
nested versetzt, verschoben (engl.)
Pellet Kügelchen (engl.), beim Zentrifugieren entstehende Ansammlung am Boden
<table>
<thead>
<tr>
<th>Primer</th>
<th>Oligonukleotid, welches als Startermolekül für DNA-Polymerasen dient (engl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sense-Strang</td>
<td>der mRNA entsprechende DNA-Strang (engl.)</td>
</tr>
<tr>
<td>sense-Primer</td>
<td>der Sequenz des sense-Stranges entsprechender Primer (engl.)</td>
</tr>
<tr>
<td>single copy gene</td>
<td>Gen, welches im Genom in nur einer Kopie vorkommt (engl.)</td>
</tr>
<tr>
<td>sticky ends</td>
<td>überhängende Enden eines dsDNA-Fragmentes nach Restrikionsverdau (engl.)</td>
</tr>
<tr>
<td>Template</td>
<td>Matrizen-DNA (engl.)</td>
</tr>
<tr>
<td>Thermocycler</td>
<td>PCR-Machine (engl.)</td>
</tr>
<tr>
<td>Transkript</td>
<td>die mRNA eines umgeschriebenen Gens (lat.)</td>
</tr>
<tr>
<td>touch down</td>
<td>schrittweises Herabsetzen der Annealing-Temperatur bei der PCR (engl.)</td>
</tr>
<tr>
<td>Vortexer</td>
<td>Apparatur zum Durchmischen kleiner Reaktionsgefäße</td>
</tr>
<tr>
<td>Well</td>
<td>Vertiefung in einer Zellkultur- oder Mikrotiterplatte (engl.)</td>
</tr>
</tbody>
</table>
6.3 Literaturverzeichnis

Krausz, C., Quintana-Murci, L., Fellous, M., Siffroi, J.P., McElreavey, K.
Absence of mutations involving the INSL3 gene in human idiopathic cryptorchidism.

A cell-specific nuclear receptor regulates the steroid hydroxylases.

Leeson, C.R.
Observations on the fine structure of rat interstitial tissue.

Luo, X., Ikeda, Y., Parker, K.L.
A cell specific nuclear receptor is required for adrenal and gonadal development and for male sexual differentiation.

Majdic, G., Saunders, P.T.
Differential patterns of expression of DAX-1 and steriodogenic factor-1 (SF-1) in the fetal rat testis.

Mandl, A.M.
The population of germ cells in immature male rats following irradiation at birth.

Meschede, N., Horst, J.
The molecular genetics of male infertility.

Morgenstern, B.
DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment.

Morohashi, K., Honda, S., Inomata, Y., Handa, H., Omura, T.
A common trans-acting factor, Ad4-binding protein, to the promoters of steriodogenic P-450s.

Morris, M.D., Chaikoff, I.L.
The origin of cholesterol in liver, small intestine, adrenal gland, and the testes of rat: dietary versus endogenous contributions.

Morris, I.D., Phillips, D.M., Bardins, C.W.
Ethylene dimethanesulphonate destroys Leydig cells in the rat testis.

Nef, S., Parada, L.F.
Cryptorchidism in mice mutant for *Insl3*.

Nef, S., Shipman, T., Parada, L.F.
A molecular basis for estrogen-induced cryptorchidism.

O’Shaughnessy, P.J.
Steroidogenic enzyme activity in the hypogonadal (*hpg*) mouse testis and effect of treatment with luteinizing hormone.

O’Shaughnessy, P.J., Murphy, L.
Steroidogenic enzyme activity in the rat testis following Leydig cell destruction by ethylene-1,2-dimethanesulphonate and during subsequent Leydig cell regeneration.

Palayoor, T., Batra, B.K.
Effects of maternal x-irradiation of mice on the germ cells of their progeny.

Parker, K.L.
The roles of steroidogenic factor 1 in endocrine development and function.

The expression of the RLF/INSL3 gene is reduced in Leydig cells of the aging rat testis.

Perez, C., Novoa, J., Alcaniz, J., Salto, L., Barcelo, B.
Leydig cell tumour of the testis with gynaecomastia and elevated oestrogen, progesterone and prolactin levels: case report.

Preslock, J.P., Steinberger, E.
Testicular steroidogenesis in the common marmoset, Callithrix jacchus.

Pusch, W., Balvers, M., Ivell, R.
Molecular cloning and expression of the relaxin-like factor from the mouse testis.

Quinn, P.G., Dombransky, L.J., Chen, Y.D., Payne, A.H.
Serum lipoproteins increase testosterone production in hCG-desensitized Leydig cells.

Radburn, D.J., Coquelin, A., Reinhart, A.J., Hutson, J.C.
Regulation of the macrophage population in postnatal rat testis.

Ramkisson, Y., Goodfellow P.
Early steps in mammalian sex determination.

Reijo, R., Lee, T.-Y., Dalo, P.
Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene.
Rice, D.A., Mouw, A.R., Bogerd, A.M., Parker, K.L.
A shared promotor element regulates the expression of three steroidogenic enzymes.

Roche, P.J., Buikus, A., Wintour, E.M., Tregear, J.
Structure and expression of Leydig insulin-like peptide mRNA in the sheep.

Rosengren, K. J., Zhang, S., Lin, F., Daly, N. L., Scott, D.J., Hughes, R.A., Bathgate, R.A.D., Craik, D.J., Wade, J. D.
Solution Structure and Characterization of the LGR8 Receptor Binding Surface of Insulin-like Peptide 3.

Sadeghian, H., Anand-Ivell, R., Balvers, M., Relan, V., Ivell, R.
Constitutive regulation of Ins3 gene in rat Leydig cells.

Sadovsky, Y., Crawford, P.A.
Development and physiology roles of the nuclear receptor steroidogenic factor-1 in the reproductive system.

Schulze, C.
Sertoli cells and Leydig cells in man.

Sharpe, R.
Another DDT connection.

Sheffield, J.W., O'Shaughnessy, P.J.
Testicular steroid metabolism during development in the normal and hypogonadal mouse.

Shen Y., Sangiah, S., Na+, K+-ATPase, glutathione, and hydroxyl free radicals in cadmium chloride-induced testicular toxicity in mice.

Skakkebaek, N.E., Berthelsen, J.E., Giwercman, A., Müller, J.
Carcinoma-in-situ of the testis: possible origin from gonocytes and presursor of all types of germ cell tumours except spermatocytoma.

Slaunwhite, W.R., Jr., Samuels, L.T.
Progesterone as a precursor of testicular androgens.

Spanel-Borowski, K., Schäler, I., Zimmermann, S., Engel, W., Adham, I.M.
Increase in final stages of follicular atresia and premature dacy of corpora lutea in Ins3-deficient mice.

Spiess, A.N., Balvers, M., Tena-Sempere, M., Hutaniemi, I., Parry, L., Ivell, R.
Structure and expression of the rat relaxin-like factor (RLF) gene.

Stedronsksy, K., Telgmann, R., Tillmann, G., Walther, N., Ivell, R.
The affinity and activity of the multiple hormone response element in the proximal promoter of the human oxytocin gene.

Tapanainen, J.S., Vaskivuo, T., Aittomaki, K., Huhtaniemi, I.T.
Inactivating FSH receptor mutations and gonadal dysfunction.

Wadhera, S.

Walther, N., Wehrenberg, U., Kascheike, B., Jansen, M., Ivell, R.
Regulation of oxytocin expression in the bovine corpus luteum: Orphan receptors and the oxytocin promoter.

Leukocyte populations of the adult rat testis following removal of the Leydig cells by treatment with ethane dimethane sulfonate and subcutaneous testosterone implants.

Wehrenberg, U., Ivell, R., Jansen, M., von Goedecke, S., Walther, N.
Two orphan receptors binding to a common site are involved in the regulation of the oxytocin gene in the bovine ovary.

WHO.
Infections, pregnancies, and infertility: Perspectives on prevention.

Phthalate ester-induced gubernacular lesions are associated with reduced Ins3 gene expression in the fetal rat testis.

Phthalate ester-induced gubernacular lesions are associated with reduced Ins3 gene expression in the fetal rat testis.

Zimmermann, S., Schottler, P., Engel, W., Adham, I.M.
Mouse Leydig insulin-like (Ley-I-L) gene: structure and expression during tests and ovary development.
Zimmermann, S., Schwärzler, A., Buth, S., Engel, W., Adham, I.M.
Transcription of the Leydig insulin-like gene is mediated by steroidogenic factor-1.

Targeted disruption of the INSL3 gene causes bilateral cryptorchidism.
6.4 Danksagung

Prof. Dr. Richard Ivell gilt mein besonderer Dank für die interessante Themenstellung, die zahlreichen und fruchtbaren Diskussionen und die Möglichkeit, die Ergebnisse zu präsentieren. Auch danke ich ihm für seine immerwährende Gesprächsbereitschaft.

Herrn Prof. Dr. Hans Joachim Seitz danke ich für die exzellenten Forschungsbedingungen, die geduldige Ermutigung und die Übernahme des Zweitgutachtens dieser Arbeit.

Herrn PD. Dr. Norbert Walther vom Institut für Hormon- und Fortpflanzungsforschung (IHF) der Universität Hamburg möchte ich ganz herzlich für die jahrelange praktische und theoretische Anleitung im Institut und für die Übernahme des Erstgutachtens dieser Arbeit danken.

Mein besonderer Dank gilt Frau Ulrike Braun für die kritische Begutachtung meiner Interpretation der deutschen Grammatik.

Meinen Eltern und meiner Familie danke ich für ihren Beistand und die tatkräftige Unterstützung.

Den vielen Tieren, die für meine Doktorarbeit das Leben lassen mussten, gebührt nicht nur mein Dank, sondern auch meine Traurigkeit.
6.5 Lebenslauf

Persönliche Daten:
Name: Helen Sadeghian
Adresse: Kiebitzreihe 31 22844 Norderstedt
Geburtsdatum: 30.10.1964
Geburtsort: Abhar / Iran
Familienstand: verheiratet
Kind: ein
Staatsangehörigkeit: Deutsch

Schulausbildung:
1970 - 1975 Grundschule Zandjan / Iran
1975 - 1978 Mittelschule Zandjan
1978 - 1982 Gymnasium Zandjan
1982 Abitur in der Fachrichtung Mathematik und Physik
1983 Abitur in der Fachrichtung Experimentelle Wissenschaften

Studium:
1983 - 1984 Vorbereitung auf die Aufnahmeprüfung für die Universität Teheran / Iran
1984 - 1993 Studium der Humanmedizin Universität Teheran
1990 - 1992 Promotion, Universität Teheran
 Thema: Magenfrühkarzinom
01/1993 Doktor der Medizin
2000 - 2002 Aufbaustudium „Molekularbiologie“ an der Universität Hamburg

Berufliche Tätigkeiten:
09/1985 - 11/1987 Studentische Hilfskraft der Anatomie am medizinischen Fachbereich der Universität Teheran
01/1990 - 12/1993 Dokumentation der Daten über Nieren-transplantation Internationales Nierentransplantationszentrum, Heidelberg
 Leitung: Professor Opelz
01/1993 - 01/1996 Ärztin für Allgemeinmedizin
 Asia Krankenhaus, Teheran
09/1994 -10/1995 Ärztin für Allgemeinmedizin
 Gesundheitszentrum, Nord-Teheran
02/1997 - 08/1997 Gastärztin
 Neurochirurgische Klinik der medizinischen Hochschule Hannover
 Direktor : Professor Samii
09/2000 - 01/2003 Gastwissenschaftlerin
 Institut für Hormon- und Fortpflanzungsforschung an der Universität Hamburg
Seit 02/2003 Wissenschaftliche Mitarbeiterin
 Gynäkopathologie
 Universitätsklinikum Hamburg-Eppendorf (UKE)

Promotion:
1990 - 1992 Thema: Magenfrühkarzinom an der Universität Teheran
01/1993 Doktor der Medizin
09/2000 – 02/2003 Vorliegende Arbeit am Institut für Hormon- und Fortpflanzungsforschung (IHF) an der Universität Hamburg im Fachbereich Medizin

6. Anhang
6.6 Erklärung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Wesentliche Teile der vorgelegten Doktorarbeit sind im nachfolgenden Artikel veröffentlicht.

Helen Sadeghian, Ravinder Anand-Ivell, Marga Balvers, Vandana Relan und Richard Ivell
Constitutive regulation of the Insl3 gene in rat Leydig cells

Helen Sadeghian